Show simple item record

Adaptive contrast weighted learning for multi‐stage multi‐treatment decision‐making

dc.contributor.authorTao, Yebin
dc.contributor.authorWang, Lu
dc.date.accessioned2017-04-14T15:11:32Z
dc.date.available2018-05-04T20:56:58Zen
dc.date.issued2017-03
dc.identifier.citationTao, Yebin; Wang, Lu (2017). "Adaptive contrast weighted learning for multi‐stage multi‐treatment decision‐making." Biometrics 73(1): 145-155.
dc.identifier.issn0006-341X
dc.identifier.issn1541-0420
dc.identifier.urihttps://hdl.handle.net/2027.42/136487
dc.publisherWiley Periodicals, Inc.
dc.subject.otherClassification
dc.subject.otherDynamic treatment regime
dc.subject.otherPersonalized medicine
dc.subject.otherCausal inference
dc.subject.otherBackward induction
dc.titleAdaptive contrast weighted learning for multi‐stage multi‐treatment decision‐making
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136487/1/biom12539.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136487/2/biom12539_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136487/3/biom12539-sup-0001-SuppData.pdf
dc.identifier.doi10.1111/biom.12539
dc.identifier.sourceBiometrics
dc.identifier.citedreferenceSutton, R. and Barto, A. ( 1998 ). Reinforcement Learning: An Introduction.Cambridge: MIT Press.
dc.identifier.citedreferenceRobins, J. M. ( 1997 ). Causalinference from complex longitudinal data. In Latent VariableModeling and Applications to Causality, 69–117. New York:Springer.
dc.identifier.citedreferenceRobins, J. M. ( 2000 ). Marginalstructural models versus structural nested models as tools forcausal inference. In Statistical Models in Epidemiology, theEnvironment, and Clinical Trials, 95 – 133.New York: Springer.
dc.identifier.citedreferenceRobins, J. M. ( 2004 ). Optimalstructural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium in Biostatistics, 189 – 326. New York: Springer.
dc.identifier.citedreferenceRobins, J. M. and Hernán, M. A. ( 2009 ). Estimation of the causaleffects of time‐varying exposures. In Longitudinal DataAnalysis, 553 – 599. Boca Raton: Chapman andHall/CRC Press.
dc.identifier.citedreferenceRobins, J. M., Rotnitzky, A., and Zhao, L. ( 1994 ). Estimation of regression coefficients when some regressorsare not always observed. Journal of the AmericanStatistical Association 89, 846 – 866.
dc.identifier.citedreferenceRotnitzky, A., Robins, J., and Scharfstein, D. ( 1998 ). Semiparametric regression for repeatedoutcomes with nonignorable nonresponse. Journal of theAmerican Statistical Association 93, 1321 – 1339.
dc.identifier.citedreferenceScharfstein, D., Rotnitzky, A., and Robins, J. ( 1999 ). Adjusting for nonignorable drop‐out using semiparametricnonresponse models. Journal of the American StatisticalAssociation 94, 1096 – 1120.
dc.identifier.citedreferenceSchulte, P. J., Tsiatis, A. A., Laber, E. B., and Davidian, M. ( 2014 ). Q‐anda‐learning methods for estimating optimal dynamic treatmentregimes. Statistical Science 29, 640 – 661.
dc.identifier.citedreferenceThall, P. F., Wooten, L.H., Logothetis, C. J., Millikan, R. E., and Tannir, N. M. ( 2007 ). Bayesian and frequentisttwo‐stage treatment strategies based on sequential failure timessubject to interval censoring. Statistics in Medicine 26, 4687 – 4707.
dc.identifier.citedreferencevan der Laan, M. J. and Rubin, D. ( 2006 ). Targeted maximum likelihoodlearning. The International Journal of Biostatistics 2, 1 – 40.
dc.identifier.citedreferenceWagner, E. H., Austin, B.T., Davis, C., Hindmarsh, M., Schaefer, J., and Bonomi, A. ( 2001 ). Improvingchronic illness care: Translating evidence into action. Health Affairs 20, 64 – 78.
dc.identifier.citedreferenceWang, F., Wang, L., and Song, P. X. ( 2016 ). Fusedlasso with the adaptation of parameter ordering (FLAPO) in mergingmultiple studies with repeated measurements. Biometrics,DOI:10.1111/biom.12496.
dc.identifier.citedreferenceWang, L., Rotnitzky, A., Lin, X., Millikan, R.E., and Thall, P. F. ( 2012 ). Evaluation of viable dynamic treatment regimes in asequentially randomized trial of advanced prostate cancer. Journal of the American Statistical Association 107, 493 – 508.
dc.identifier.citedreferenceWatkins, C. J. and Dayan, P. ( 1992 ). Q‐learning. MachineLearning 8, 279 – 292.
dc.identifier.citedreferenceZhang, B., Tsiatis, A.A., Davidian, M., Zhang, M., and Laber, E. B. ( 2012 ). Estimating optimal treatment regimes from a classificationperspective. Stat 1, 103 – 114.
dc.identifier.citedreferenceZhao, Y., Zeng, D., Laber, E. B., and Kosorok, M. R. ( 2015 ). New statistical learningmethods for estimating optimal dynamic treatment regimes. Journal of the American Statistical Association 110, 583 – 598.
dc.identifier.citedreferenceZhao, Y., Zeng, D., Rush, A. J., and Kosorok, M. R. ( 2012 ). Estimating individualizedtreatment rules using outcome weighted learning. Journal ofthe American Statistical Association 107, 1106 – 1118.
dc.identifier.citedreferenceZhou, X., Mayer‐Hamblett, N., Khan, U., and Kosorok, M. R. ( 2015 ). Residual weighted learning for estimating individualizedtreatment rules. Journal of the American StatisticalAssociation, DOI:10.1080/01621459.2015.1093947.
dc.identifier.citedreferenceBather, J. ( 2000 ). Decision Theory: An Introduction to Dynamic Programming and Sequential Decisions. New York: Wiley.
dc.identifier.citedreferenceBreiman, L. ( 2001 ). Randomforests. Machine Learning 45, 5 – 32.
dc.identifier.citedreferenceBreiman, L., Freidman, J.H., Olshen, R. A., and Stone, C. J. ( 1984 ). Classification and RegressionTrees. Belmont, CA: Wadsworth.
dc.identifier.citedreferenceByrd, D. R., Compton, C.C., Fritz, A. G., Greene, F. L., and Trotti, A. ( 2010 ). AJCC Cancer Staging Manual (Vol. 649). New York: Springer.
dc.identifier.citedreferenceChakraborty, B., Laber, E.B., and Zhao, Y. ( 2013 ). Inference for optimal dynamic treatment regimes using anadaptive m‐Out‐of‐n bootstrap scheme. Biometrics 69, 714 – 723.
dc.identifier.citedreferenceCortes, C. and Vapnik, V. ( 1995 ). Support‐vector networks. Machine Learning 20, 273 – 297.
dc.identifier.citedreferenceGoldberg, Y. and Kosorok, M. R. ( 2012 ). Q‐learning with censoreddata. Annals of Statistics 40, 529 – 560.
dc.identifier.citedreferenceHaddad, R., O’Neill, A., Rabinowits, G., Tishler, R., Khuri, F., Adkins, D., et al. ( 2013 ). Induction chemotherapyfollowed by concurrent chemoradiotherapy (sequentialchemoradiotherapy) versus concurrent chemoradiotherapy alone inlocally advanced head and neck cancer (PARADIGM): A randomisedphase 3 trial. The Lancet Oncology 14, 257 – 264.
dc.identifier.citedreferenceHernán, M. A., Brumback, B., and Robins, J. M. ( 2001 ). Marginal structural models to estimate the joint causaleffect of nonrandomized treatments. Journal of the AmericanStatistical Association 96, 440 – 448.
dc.identifier.citedreferenceHuang, X., Choi, S., Wang, L., and Thall, P.F. ( 2015 ). Optimization of multi‐stage dynamictreatment regimes utilizing accumulated data. Statistics inMedicine 34, 3424 – 3443.
dc.identifier.citedreferenceJin, J., Liao, Z., Zhang, Z., Ajani, J., Swisher, S., Chang, J.Y., et al. ( 2004 ). Induction chemotherapyimproved outcomes of patients with resectable esophageal cancer whoreceived chemoradiotherapy followed by surgery. International Journal of Radiation Oncology*Biology*Physics 60, 427 – 436.
dc.identifier.citedreferenceLloyd, S. and Chang, B.W. ( 2014 ). Current strategies in chemoradiationfor esophageal cancer. Journal of GastrointestinalOncology 5, 156 – 165.
dc.identifier.citedreferenceMenard, S. ( 2002 ). Applied Logistic Regression Analysis.Thousand Oaks, CA: Sage, 2nd edition.
dc.identifier.citedreferenceMoodie, E. E., Chakraborty, B., and Kramer, M. S. ( 2012 ). Q‐learning for estimating optimal dynamic treatment rulesfrom observational data. Canadian Journal of Statistics 40, 629 – 645.
dc.identifier.citedreferenceMurphy, S. A. ( 2003 ). Optimal dynamic treatment regimes. Journal of theRoyal Statistical Society, Series B (Statistical Methodology) 65, 331 – 355.
dc.identifier.citedreferenceMurphy, S. A. ( 2005 ). An experimental design for the development of adaptive treatment strategies. Statistics in Medicine 24, 1455 – 1481.
dc.identifier.citedreferenceRaghunathan, T. E., Solenberger, P., and Van Hoewyk, J. ( 2002 ). IVEware:Imputation and Variance Estimation Software User Guide. SurveyMethodology Program, University of Michigan, Ann Arbor, Michigan.
dc.identifier.citedreferenceRobins, J. ( 1986 ). A newapproach to causal inference in mortality studies with a sustainedexposure period: Application to control of the healthy workersurvivor effect. Mathematical Modelling 7, 1393 – 1512.
dc.identifier.citedreferenceRobins, J. M. ( 1989 ). Theanalysis of randomized and non‐randomized aids treatment trialsusing a new approach to causal inference in longitudinal studies. Health Service Research Methodology: A Focus on AIDS 113, 159.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.