Show simple item record

Semidiurnal internal tide energy fluxes and their variability in a Global Ocean Model and moored observations

dc.contributor.authorAnsong, Joseph K.
dc.contributor.authorArbic, Brian K.
dc.contributor.authorAlford, Matthew H.
dc.contributor.authorBuijsman, Maarten C.
dc.contributor.authorShriver, Jay F.
dc.contributor.authorZhao, Zhongxiang
dc.contributor.authorRichman, James G.
dc.contributor.authorSimmons, Harper L.
dc.contributor.authorTimko, Patrick G.
dc.contributor.authorWallcraft, Alan J.
dc.contributor.authorZamudio, Luis
dc.date.accessioned2017-05-10T17:47:29Z
dc.date.available2018-05-04T20:56:59Zen
dc.date.issued2017-03
dc.identifier.citationAnsong, Joseph K.; Arbic, Brian K.; Alford, Matthew H.; Buijsman, Maarten C.; Shriver, Jay F.; Zhao, Zhongxiang; Richman, James G.; Simmons, Harper L.; Timko, Patrick G.; Wallcraft, Alan J.; Zamudio, Luis (2017). "Semidiurnal internal tide energy fluxes and their variability in a Global Ocean Model and moored observations." Journal of Geophysical Research: Oceans 122(3): 1882-1900.
dc.identifier.issn2169-9275
dc.identifier.issn2169-9291
dc.identifier.urihttps://hdl.handle.net/2027.42/136669
dc.description.abstractWe examine the temporal means and variability of the semidiurnal internal tide energy fluxes in 1/25° global simulations of the Hybrid Coordinate Ocean Model (HYCOM) and in a global archive of 79 historical moorings. Low‐frequency flows, a major cause of internal tide variability, have comparable kinetic energies at the mooring sites in model and observations. The computed root‐mean‐square (RMS) variability of the energy flux is large in both model and observations and correlates positively with the time‐averaged flux magnitude. Outside of strong generation regions, the normalized RMS variability (the RMS variability divided by the mean) is nearly independent of the flux magnitudes in the model, and of order 23% or more in both the model and observations. The spatially averaged flux magnitudes in observations and the simulation agree to within a factor of about 1.4 and 2.4 for vertical mode‐1 and mode‐2, respectively. The difference in energy flux computed from the full‐depth model output versus model output subsampled at mooring instrument depths is small. The global historical archive is supplemented with six high‐vertical resolution moorings from the Internal Waves Across the Pacific (IWAP) experiment. The model fluxes agree more closely with the high‐resolution IWAP fluxes than with the historical mooring fluxes. The high variability in internal tide energy fluxes implies that internal tide fluxes computed from short observational records should be regarded as realizations of a highly variable field, not as “means” that are indicative of conditions at the measurement sites over all time.Key PointsThe RMS variability in internal tide energy flux is large in both model and observationsMode‐1 internal tide fluxes compare much better with observationsHYCOM compares very well with internal tides fluxes from the IWAP experiment
dc.publisherWiley Periodicals, Inc.
dc.publisherPergamon
dc.subject.otherenergy flux
dc.subject.otherglobal internal tides
dc.titleSemidiurnal internal tide energy fluxes and their variability in a Global Ocean Model and moored observations
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136669/1/jgrc22159_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136669/2/jgrc22159.pdf
dc.identifier.doi10.1002/2016JC012184
dc.identifier.sourceJournal of Geophysical Research: Oceans
dc.identifier.citedreferenceRay, R. D., and E. D. Zaron ( 2016 ), M 2 internal tides and their observed wavenumber spectra from satellite altimetry, J. Phys. Oceanogr., 46, 3 – 22, doi: 10.1175/JPO-D-15-0065.1.
dc.identifier.citedreferenceNgodock, H. E., I. Souopgui, A. J. Wallcraft, J. G. Richman, J. F. Shriver, and B. K. Arbic ( 2016 ), On improving the accuracy of the M 2 barotropic tides embedded in a high‐resolution global ocean circulation model, Ocean Modell., 97, 16 – 26, doi: 10.1016/j.ocemod.2015.10.011.
dc.identifier.citedreferenceNiwa, Y., and T. Hibiya ( 2011 ), Estimation of baroclinic tide energy available for deep ocean mixing based on three‐dimensional global numerical simulations, J. Oceanogr., 67, 493 – 502.
dc.identifier.citedreferencePonte, A. L., and P. Klein ( 2015 ), Incoherent signature of internal tides on sea level in idealized numerical simulations, Geophys. Res. Lett., 42, 1520 – 1526, doi: 10.1002/2014GL062583.
dc.identifier.citedreferenceRainville, L., T. M. Shaun Johnston, G. S. Carter, M. A. Merrifield, R. Pinkel, P. F. Worcester, and B. D. Dushaw ( 2010 ), Interference pattern and propagation of the m 2 internal tide south of the Hawaiian Ridge, J. Phys. Oceanogr., 40, 311 – 325.
dc.identifier.citedreferenceRay, R. D. ( 1998 ), Ocean self‐attraction and loading in numerical tidal models, Mar. Geod., 21, 181 – 192.
dc.identifier.citedreferenceRay, R. D., and G. T. Mitchum ( 1996 ), Surface manifestation of internal tides generated near Hawaii, Geophys. Res. Lett., 23, 2101 – 2104.
dc.identifier.citedreferenceRay, R. D., and G. T. Mitchum ( 1997 ), Surface manifestation of internal tides in the deep ocean: Observations from altimetry and tide gauges, Prog. Oceanogr., 40, 135 – 162.
dc.identifier.citedreferenceRay, R. D., and E. D. Zaron ( 2011 ), Non‐stationary internal tides observed with satellite altimetry, Geophys. Res. Lett., 38, L17609, doi: 10.1029/2011GL048617.
dc.identifier.citedreferenceRichman, J. G., B. K. Arbic, J. F. Shriver, E. J. Metzger, and A. J. Wallcraft ( 2012 ), Inferring dynamics from the wavenumber spectra of an eddying Global Ocean Model with embedded tides, J. Geophys. Res., 117, C12012, doi: 10.1029/2012JC008364.
dc.identifier.citedreferenceRocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis ( 2016 ), Mesoscale to submesoscale wavenumber spectra in Drake Passage, J. Phys. Oceanogr., 46, 601 – 620, doi: 10.1175/JPO-D-15-0087.1.
dc.identifier.citedreferenceShriver, J. F., B. K. Arbic, J. G. Richman, R. D. Ray, E. J. Metzger, A. J. Wallcraft, and P. G. Timko ( 2012 ), An evaluation of the barotropic and internal tides in a high resolution global ocean circulation model, J. Geophys. Res., 117, C10024, doi: 10.1029/2012JC008170.
dc.identifier.citedreferenceShriver, J. F., J. G. Richman, and B. K. Arbic ( 2014 ), How stationary are the internal tides in a high resolution global ocean circulation model?, J. Geophys. Res., 119, 2769 – 2787, doi: 10.1002/2013JC009423.
dc.identifier.citedreferenceSimmons, H. L. ( 2008 ), Spectral modification and geographic redistribution of the semi‐diurnal internal tide, Ocean Modell., 21, 126 – 138.
dc.identifier.citedreferenceSimmons, H. L., and M. H. Alford ( 2012 ), Simulating the long‐range swell of internal waves generated by ocean storms, Oceanography, 25 ( 2 ), 30 – 41.
dc.identifier.citedreferenceSimmons, H. L., R. W. Hallberg, and B. K. Arbic ( 2004 ), Internal wave generation in a global baroclinic tide model, Deep Sea Res., Part II, 51, 3043 – 3068.
dc.identifier.citedreferenceSt. Laurent, L., and C. Garrett ( 2002 ), The role of internal tides in mixing the deep ocean, J. Phys. Oceanogr., 32, 2882 – 2899.
dc.identifier.citedreferenceStammer, D., et al. ( 2014 ), Accuracy assessment of global barotropic ocean tide models, Rev. Geophys., 52, 243 – 282, doi: 10.1002/2014RG000450.
dc.identifier.citedreferenceThoppil, P. G., J. G. Richman, and P. J. Hogan ( 2011 ), Energetics of a global ocean circulation model compared to observations, Geophys. Res. Lett., 38, L15607, doi: 10.1029/2011GL048347.
dc.identifier.citedreferenceTimko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft ( 2012 ), Skill tests of three‐dimensional tidal currents in a Global Ocean Model: A look at the North Atlantic, J. Geophys. Res., 117, C08014, doi: 10.1029/2011JC007617.
dc.identifier.citedreferenceTimko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft ( 2013 ), Skill testing a three‐dimensional global tide model to historical current meter records, J. Geophys. Res., 118, 6914 – 6933, doi: 10.1002/2013JC009071.
dc.identifier.citedreferenceWunsch, C. ( 1975 ), Internal tides in the ocean, Rev. Geophys. Space Phys., 13, 167 – 182.
dc.identifier.citedreferenceWunsch, C., and R. Ferrari ( 2004 ), Vertical mixing, energy and the general circulation of the ocean, Annu. Rev. Fluid Mech., 36, 281 – 314.
dc.identifier.citedreferenceWunsch, C., and D. Stammer ( 1997 ), Atmospheric loading and the oceanic “inverted barometer” effect, Rev. Geophys., 35, 79 – 107.
dc.identifier.citedreferenceZaron, E. D. ( 2015 ), Nonstationary internal tides observed using dual‐satellite altimetry, J. Phys. Oceanogr., 45, 2239 – 2246, doi: 10.1175/JPO-D-15-0020.1.
dc.identifier.citedreferenceZaron, E. D., and G. D. Egbert ( 2014 ), Time‐variable refraction of the internal tide at the Hawaiian Ridge, J. Phys. Oceanogr., 44, 538 – 557, doi: 10.1175/JPO-D-12-0238.1.
dc.identifier.citedreferenceZhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel ( 2010 ), Long‐range propagation of the semi‐diurnal internal tide from the Hawaiian Ridge, J. Phys. Oceanogr., 40, 713 – 736.
dc.identifier.citedreferenceZhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons ( 2016 ), Global observations of open‐ocean mode 1 M 2 internal tides, J. Phys. Oceanogr., 46, 1657 – 1684, doi: 10.1175/JPO-D-15-0105.1.
dc.identifier.citedreferenceAlford, M. H., and Z. Zhao ( 2007 ), Global patterns of low‐mode internal‐wave propagation. Part I: Energy and energy flux, J. Phys. Oceanogr., 37, 1829 – 1848.
dc.identifier.citedreferenceAlford, M. H., J. MacKinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock ( 2007 ), Internal Waves Across the Pacific, Geophys. Res. Lett., 34, L24601, doi: 10.1029/2007GL031566.
dc.identifier.citedreferenceAlford, M. H., et al. ( 2015 ), The formation and fate of internal waves in the South China Sea, Nature, 521, 65 – 69, doi: 10.1038/nature14399.
dc.identifier.citedreferenceLighthill, M. J. ( 1969 ), Dynamic response of the Indian Ocean to the onset of the southwest monsoon, Philos. Trans. R. Soc. London A, 265 ( 1159 ), 45 – 92.
dc.identifier.citedreferenceAnsong, J. K., B. K. Arbic, M. C. Buijsman, J. G. Richman, J. F. Shriver, and A. J. Wallcraft ( 2015 ), Indirect evidence for substantial damping of low‐mode internal tides in the open ocean, J. Geophys. Res. Oceans, 120, 6057 – 6071, doi: 10.1002/2015JC010998.
dc.identifier.citedreferenceArbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons ( 2004 ), The accuracy of surface elevations in forward global barotropic and baroclinic tide models, Deep Sea Res., Part II, 51, 3069 – 3101.
dc.identifier.citedreferenceArbic, B. K., A. J. Wallcraft, and E. J. Metzger ( 2010 ), Concurrent simulation of the eddying general circulation and tides in a Global Ocean Model, Ocean Modell., 32, 175 – 187.
dc.identifier.citedreferenceArbic, B. K., J. G. Richman, J. F. Shriver, P. G. Timko, E. J. Metzger, and A. J. Wallcraft ( 2012 ), Global modeling of internal tides within an eddying ocean general circulation model, Oceanography, 25 ( 2 ), 20 – 29.
dc.identifier.citedreferenceBleck, R. ( 2002 ), An oceanic general circulation model framed in hybrid isopycnic‐Cartesian coordinates, Ocean Modell., 37, 55 – 88.
dc.identifier.citedreferenceBuijsman, M. C., J. Klymak, S. Legg, M. H. Alford, D. Farmer, J. A. MacKinnon, J. D. Nash, J.‐H. Park, A. Pickering, and H. Simmons ( 2014 ), Three‐dimensional double‐ridge internal tide resonance in Luzon Strait, J. Phys. Oceanogr., 44, 850 – 1356, doi: 10.1175/JPO-D-13-024.1.
dc.identifier.citedreferenceBuijsman, M. C., B. K. Arbic, J. A. M. Green, R. W. Helber, J. G. Richman, J. F. Shriver, P. G. Timko, and A. J. Wallcraft ( 2015 ), Optimizing internal wave drag in a forward barotropic model with semidiurnal tides, Ocean Modell., 85, 42 – 55.
dc.identifier.citedreferenceBuijsman, M. C., J. K. Ansong, B. K. Arbic, J. G. Richman, J. F. Shriver, P. G. Timko, A. J. Wallcraft, C. B. Whalen, and Z. Zhao ( 2016 ), Impact of internal wave drag on the semidiurnal energy balance in a global ocean circulation model, J. Phys. Oceanogr., 46, 1399 – 1419, doi: 10.1175/JPO-D-15-0074.1.
dc.identifier.citedreferenceCarter, G. S., O. B. Fringer, and E. D. Zaron ( 2012 ), Regional models of internal tides, Oceanography, 25 ( 2 ), 56 – 65.
dc.identifier.citedreferenceChassignet, E. P., et al. ( 2009 ), Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM), Oceanography, 22, 64 – 76.
dc.identifier.citedreferenceCummins, P. E., and L. Y. Oey ( 1997 ), Simulation of barotropic and baroclinic tides off Northern British Columbia, J. Phys. Oceanogr., 27, 762 – 781.
dc.identifier.citedreferenceDushaw, B. D., P. F. Worcester, B. D. Cormuelle, B. M. Howe, and D. S. Luther ( 1995 ), Baroclinic and barotropic tides in the central North‐Pacific Ocean determined from long‐range reciprocal acoustic transmissions, J. Phys. Oceanogr., 25, 631 – 647.
dc.identifier.citedreferenceEgbert, G. D., and R. D. Ray ( 2003 ), Semi‐diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry, Geophys. Res. Lett., 30 ( 17 ), 1907, doi: 10.1029/2003GL017676.
dc.identifier.citedreferenceEgbert, G. G., and S. Y. Erofeeva ( 2002 ), Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 19, 183 – 204.
dc.identifier.citedreferenceEgbert, G. G., and R. D. Ray ( 2000 ), Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data, Nature, 405, 775 – 778.
dc.identifier.citedreferenceEgbert, G. G., and R. D. Ray ( 2001 ), Estimates of M 2 tidal energy dissipation from TOPEX/POSEIDON altimeter data, J. Geophys. Res., 106, 22,475 – 22,502.
dc.identifier.citedreferenceEmery, W. J., and R. E. Thomson ( 1997 ), Data Analysis Methods in Physical Oceanography, Pergamon, New York.
dc.identifier.citedreferenceFlierl, G. R. ( 1978 ), Models of vertical structure and the calibration of two‐layer models, Dyn. Atmos. Oceans, 2, 341 – 381.
dc.identifier.citedreferenceGill, A. E. ( 1982 ), Atmosphere‐Ocean Dynamics, Academic, New York.
dc.identifier.citedreferenceHalliwell, G. R. ( 2004 ), Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid‐Coordinate Ocean Model (HYCOM), Ocean Modell., 7, 285 – 322.
dc.identifier.citedreferenceHecht, M. W., and H. Hasumi (Eds.) ( 2008 ), Ocean Modeling in an Eddying Regime, Geophys. Monogr. 117, 409 pp., AGU, Washington, D. C., doi: 10.1029/GM177.
dc.identifier.citedreferenceHendershott, M. C. ( 1972 ), The effects of solid earth deformation on global ocean tides, Geophys. J. R. Astron. Soc., 29, 389 – 402.
dc.identifier.citedreferenceHibiya, T., M. Nagasawa, and Y. Niwa ( 2006 ), Global mapping of diapycnal diffusivity in the deep ocean based on the results of expendable current profiler (XCP) surveys, Geophys. Res. Lett., 33, L03611, doi: 10.1029/2005GL025218.
dc.identifier.citedreferenceHogan, T. F., et al. ( 2014 ), The Navy Global Environmental Model, Oceanography, 27 ( 3 ), 116 – 125.
dc.identifier.citedreferenceJayne, S. R., and L. C. St Laurent ( 2001 ), Parameterizing tidal dissipation over rough topography, Geophys. Res. Lett., 28, 811 – 814.
dc.identifier.citedreferenceKerry, C., B. Powell, and G. Carter ( 2014 ), The impact of subtidal circulation on internal‐tide‐induced mixing in the Philippine sea, J. Phys. Oceanogr., 44, 3209 – 3224, doi: 10.1175/JPO-D-13-0142.1.
dc.identifier.citedreferenceKerry, C., B. Powell, and G. Carter ( 2016 ), Quantifying the incoherent M 2 internal tide in the Philippine Sea, J. Phys. Oceanogr., 46, 2483 – 2491, doi: 10.1175/JPO-D-16-0023.1.
dc.identifier.citedreferenceKunze, E., L. Rosenfield, G. Carter, and M. C. Gregg ( 2002 ), Internal waves in Monterey Submarine Canyon, J. Phys. Oceanogr., 32, 1890 – 1913.
dc.identifier.citedreferenceMerrifield, M. A., and P. E. Holloway ( 2002 ), Model estimates of M 2 internal tide energetics at the Hawaiian Ridge, J. Geophys. Res., 107 ( C8 ), 3179, doi: 10.1029/2001JC000996.
dc.identifier.citedreferenceMerrifield, M. A., P. E. Holloway, and T. M. S. Johnston ( 2001 ), The generation of internal tides at the Hawaiian Ridge, Geophys. Res. Lett., 28, 559 – 562.
dc.identifier.citedreferenceMetzger, E. J., et al. ( 2014 ), US Navy operational global ocean and arctic ice prediction system, Oceanography, 27 ( 3 ), 32 – 43.
dc.identifier.citedreferenceMitchum, G. T., and S. M. Chiswell ( 2000 ), Coherence of internal tide modulations along the Hawaiian Ridge, J. Geophys. Res., 105, 28,653 – 28,661.
dc.identifier.citedreferenceMüller, M. ( 2013 ), On the space‐ and time‐dependence of barotropic‐to‐baroclinic tidal energy conversion, Ocean Modell., 72, 242 – 252, doi: 10.1016/j.ocemod.2013.09.00.
dc.identifier.citedreferenceMüller, M., J. Y. Cherniawsky, M. G. G. Foreman, and J. S. Storch von ( 2012 ), Global M 2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling, Geophys. Res. Lett., 39, L19607, doi: 10.1029/2012GL053320.
dc.identifier.citedreferenceMüller, M., J. Cherniawsky, M. Foreman, and J. S. von Storch ( 2014 ), Seasonal variation of the M 2 tide, Ocean Dyn., 64 ( 2 ), 159 – 177, doi: 10.1007/s10236-013-0679-0.
dc.identifier.citedreferenceMüller, M., B. K. Arbic, J. G. Richman, J. F. Shriver, E. L. Kunze, R. B. Scott, A. J. Wallcraft, and L. Zamudio ( 2015 ), Toward an internal gravity wave spectrum in Global Ocean Models, Geophys. Res. Lett., 42, 3474 – 3481, doi: 10.1002/2015GL063365.
dc.identifier.citedreferenceMunk, W., and C. Wunsch ( 1998 ), Abyssal recipes ii: Energetics of tidal and wind mixing, Deep Sea Res., Part I, 45, 1977 – 2010.
dc.identifier.citedreferenceNash, J. D., M. H. Alford, and E. Kunze ( 2005 ), Estimating internal wave energy fluxes in the ocean, J. Atmos. Oceanic Technol., 22, 1551 – 1570.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.