Show simple item record

Fluorescence in situ hybridization in surgical pathology: principles and applications

dc.contributor.authorCheng, Liang
dc.contributor.authorZhang, Shaobo
dc.contributor.authorWang, Lisha
dc.contributor.authorMacLennan, Gregory T
dc.contributor.authorDavidson, Darrell D
dc.date.accessioned2017-05-10T17:47:30Z
dc.date.available2018-05-15T21:02:51Zen
dc.date.issued2017-04
dc.identifier.citationCheng, Liang; Zhang, Shaobo; Wang, Lisha; MacLennan, Gregory T; Davidson, Darrell D (2017). "Fluorescence in situ hybridization in surgical pathology: principles and applications." The Journal of Pathology: Clinical Research 3(2): 73-99.
dc.identifier.issn2056-4538
dc.identifier.issn2056-4538
dc.identifier.urihttps://hdl.handle.net/2027.42/136670
dc.description.abstractIdentification of recurrent tumour‐specific chromosomal translocations and novel fusion oncogenes has important diagnostic, therapeutic and prognostic implications. Over the past decade, fluorescence in situ hybridization (FISH) analysis of tumour samples has been one of the most rapidly growing areas in genomic medicine and surgical pathology practice. Unlike traditional cytogenetics, FISH affords a rapid analysis of formalin‐fixed, paraffin‐embedded cells within a routine pathology practice workflow. As more diagnostic and treatment decisions are based on results of FISH, demand for the technology will become more widespread. Common FISH‐detected alterations are chromosome deletions, gains, translocations, amplifications and polysomy. These chromosome alterations may have diagnostic and therapeutic implications for many tumour types. Integrating genomic testing into cancer treatment decisions poses many technical challenges, but rapid progress is being made to overcome these challenges in precision medicine. FISH assessment of chromosomal changes relevant to differential diagnosis and cancer treatment decisions has become an important tool for the surgical pathologist. The aim of this review is to provide a theoretical and practical survey of FISH detected translocations with a focus on strategies for clinical application in surgical pathology practice.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherprecision medicine
dc.subject.othertargeted therapy
dc.subject.otherdifferential diagnosis
dc.subject.othermolecular genetics/cytogenetics
dc.subject.otherfluorescence in situ hybridization
dc.titleFluorescence in situ hybridization in surgical pathology: principles and applications
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPathology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136670/1/cjp264_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136670/2/cjp264.pdf
dc.identifier.doi10.1002/cjp2.64
dc.identifier.sourceThe Journal of Pathology: Clinical Research
dc.identifier.citedreferenceWeinreb I. Translocation‐associated salivary gland tumors: a review and update. Adv Anat Pathol 2013; 20: 367 – 377.
dc.identifier.citedreferenceGru AA, Becker N, Pfeifer JD. Angiosarcoma of the parotid gland with a t(12;22) translocation creating a EWSR1‐ATF1 fusion: a diagnostic dilemma. J Clin Pathol 2013; 66: 452 – 454.
dc.identifier.citedreferenceHallor KH, Mertens F, Jin Y, et al. Fusion of the EWSR1 and ATF1 genes without expression of the MITF‐M transcript in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2005; 44: 97 – 102.
dc.identifier.citedreferenceWang J, Thway K. Clear cell sarcoma‐like tumor of the gastrointestinal tract: an evolving entity. Arch Pathol Lab Med 2015; 139: 407 – 412.
dc.identifier.citedreferenceWiesner T, He J, Yelensky R, et al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat Commun 2014; 5: 3116.
dc.identifier.citedreferenceBradish JR, Cheng L. Molecular pathology of malignant melanoma: changing the clinical practice paradigm toward a personalized approach. Hum Pathol 2014; 45: 1315 – 1326.
dc.identifier.citedreferenceCancer Genome Atlas Research Network. Genomic classification of cutaneous melanoma. Cell 2015; 161: 1681 – 1696.
dc.identifier.citedreferenceShain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer 2016; 16: 345 – 358.
dc.identifier.citedreferenceHutchinson KE, Lipson D, Stephens PJ, et al. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin Cancer Res 2013; 19: 6696 – 6702.
dc.identifier.citedreferenceRoss JS, Wang K, Chmielecki J, et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int J Cancer 2016; 138: 881 – 890.
dc.identifier.citedreferenceBottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c‐met proto‐oncogene product. Science 1991; 251: 802 – 804.
dc.identifier.citedreferenceYeh I, Botton T, Talevich E, et al. Activating MET kinase rearrangements in melanoma and Spitz tumours. Nat Commun 2015; 6: 7174.
dc.identifier.citedreferenceLouis DN, Ohgaki H, Wiestler OD, Cavenee WK (Eds). WHO Classification of Tumours of the Central Nervous System. WHO/IARC Classification of Tumours, 4th Edition Revised, Volume 1. IARC Press, Lyon 2016.
dc.identifier.citedreferenceShah N, Lankerovich M, Lee H, et al. Exploration of the gene fusion landscape of glioblastoma using transcriptome sequencing and copy number data. BMC Genomics 2013; 14: 818.
dc.identifier.citedreferenceFrattini V, Trifonov V, Chan JM, et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 2013; 45: 1141 – 1149.
dc.identifier.citedreferenceCeccarelli M, Barthel FP, Malta TM, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 2016; 164: 550 – 563.
dc.identifier.citedreferenceBao ZS, Chen HM, Yang MY, et al. RNA‐seq of 272 gliomas revealed a novel, recurrent PTPRZ1‐MET fusion transcript in secondary glioblastomas. Genome Res 2014; 24: 1765 – 1773.
dc.identifier.citedreferenceEckel‐Passow JE, Lachance DH, Molinaro AM, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 2015; 372: 2499 – 2508.
dc.identifier.citedreferenceMur P, Mollejo M, Hernandez‐Iglesias T, et al. Molecular classification defines 4 prognostically distinct glioma groups irrespective of diagnosis and grade. J Neuropathol Exp Neurol 2015; 74: 241 – 249.
dc.identifier.citedreferenceWesseling P, van den Bent M, Perry A. Oligodendroglioma: pathology, molecular mechanisms and markers. Acta Neuropathol 2015; 129: 809 – 827.
dc.identifier.citedreferenceRodriguez FJ, Vizcaino MA, Lin MT. Recent advances on the molecular pathology of glial neoplasms in children and adults. J Mol Diagn 2016; 18: 620 – 634.
dc.identifier.citedreferenceJenkins RB, Blair H, Ballman KV, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 2006; 66: 9852 – 9861.
dc.identifier.citedreferenceMerchant TE, Li C, Xiong X, et al. Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol 2009; 10: 258 – 266.
dc.identifier.citedreferenceParker M, Mohankumar KM, Punchihewa C, et al. C11orf95‐RELA fusions drive oncogenic NF‐kappaB signalling in ependymoma. Nature 2014; 506: 451 – 455.
dc.identifier.citedreferenceVersteeg R. Cancer: tumours outside the mutation box. Nature 2014; 506: 438 – 439.
dc.identifier.citedreferenceBuongiorno‐Nardelli M, Amaldi F. Autoradiographic detection of molecular hybrids between RNA and DNA in tissue sections. Nature 1970; 225: 946 – 948.
dc.identifier.citedreferenceJohn HA, Birnstiel ML, Jones KW. RNA‐DNA hybrids at the cytological level. Nature 1969; 223: 582 – 587.
dc.identifier.citedreferenceGall JG, Pardue ML. Formation and detection of RNA‐DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A 1969; 63: 378 – 383.
dc.identifier.citedreferenceKatsanis SH, Katsanis N. Molecular genetic testing and the future of clinical genomics. Nat Rev Genet 2013; 14: 415 – 426.
dc.identifier.citedreferenceCheng L, Zhang DY, Eble JN. Molecular Genetic Pathology ( 2nd edn). Springer: New York, NY, 2013.
dc.identifier.citedreferenceCheng L, Eble JN. Molecular Surgical Pathology ( 1st edn). Springer: New York, NY, 2013.
dc.identifier.citedreferenceMitelman F, Johansson B, Mertens F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nat Genet 2004; 36: 331 – 334.
dc.identifier.citedreferenceLin C, Yang L, Tanasa B, et al. Nuclear receptor‐induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 2009; 139: 1069 – 1083.
dc.identifier.citedreferenceDoroshow JH, Kummar S. Translational research in oncology–10 years of progress and future prospects. Nat Rev Clin Oncol 2014; 11: 649 – 662.
dc.identifier.citedreferenceMertens F, Johansson B, Fioretos T, et al. The emerging complexity of gene fusions in cancer. Nat Rev Cancer 2015; 15: 371 – 381.
dc.identifier.citedreferenceMartin CL, Warburton D. Detection of chromosomal aberrations in clinical practice: from karyotype to genome sequence. Annu Rev Genomics Hum Genet 2015; 16: 309 – 326.
dc.identifier.citedreferenceSelvarajah S, Pyne S, Chen E, et al. High‐resolution array CGH and gene expression profiling of alveolar soft part sarcoma. Clin Cancer Res 2014; 20: 1521 – 1530.
dc.identifier.citedreferenceFriedman AA, Letai A, Fisher DE, et al. Precision medicine for cancer with next‐generation functional diagnostics. Nat Rev Cancer 2015; 15: 747 – 756.
dc.identifier.citedreferenceKumar‐Sinha C, Kalyana‐Sundaram S, Chinnaiyan AM. Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Med 2015; 7: 129.
dc.identifier.citedreferenceCheng L, Zhang S, MacLennan GT, et al. Laser‐assisted microdissection in translational research: theory, technical considerations, and future applications. Appl Immunohistochem Mol Morphol 2013; 21: 31 – 47.
dc.identifier.citedreferenceRoukos V, Misteli T. The biogenesis of chromosome translocations. Nat Cell Biol 2014; 16: 293 – 300.
dc.identifier.citedreferenceBunting SF, Nussenzweig A. End‐joining, translocations and cancer. Nat Rev Cancer 2013; 13: 443 – 454.
dc.identifier.citedreferenceVorsanova SG, Yurov YB, Iourov IY. Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 2010; 3: 1.
dc.identifier.citedreferenceSpeicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 2005; 6: 782 – 792.
dc.identifier.citedreferenceCui C, Shu W, Li P. Fluorescence in situ hybridization: cell‐based genetic diagnostic and research applications. Front Cell Dev Biol 2016; 4: 89.
dc.identifier.citedreferenceByron SA, Van Keuren‐Jensen KR, Engelthaler DM, et al. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet 2016; 17: 257 – 271.
dc.identifier.citedreferenceGoodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next‐generation sequencing technologies. Nat Rev Genet 2016; 17: 333 – 351.
dc.identifier.citedreferenceMartin JA, Wang Z. Next‐generation transcriptome assembly. Nat Rev Genet 2011; 12: 671 – 682.
dc.identifier.citedreferenceYoshihara K, Wang Q, Torres‐Garcia W, et al. The landscape and therapeutic relevance of cancer‐associated transcript fusions. Oncogene 2015; 34: 4845 – 4854.
dc.identifier.citedreferenceLatysheva NS, Babu MM. Discovering and understanding oncogenic gene fusions through data intensive computational approaches. Nucleic Acids Res 2016; 44: 4487–4503.
dc.identifier.citedreferenceOzsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 2011; 12: 87 – 98.
dc.identifier.citedreferenceMertens F, Antonescu CR, Mitelman F. Gene fusions in soft tissue tumors: recurrent and overlapping pathogenetic themes. Genes Chromosomes Cancer 2016; 55: 291 – 310.
dc.identifier.citedreferenceFletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (Eds). WHO/IARC Classification of Tumours, 4th Edition, Volume 5. IARC Press, Lyon, 2015.
dc.identifier.citedreferenceFletcher CD. The evolving classification of soft tissue tumours ‐ an update based on the new 2013 WHO classification. Histopathology 2014; 64: 2 – 11.
dc.identifier.citedreferenceThway K, Fisher C. Tumors with EWSR1‐CREB1 and EWSR1‐ATF1 fusions. The current status. Am J Surg Pathol 2012; 36: e1 – e11.
dc.identifier.citedreferenceGrunewald TG, Bernard V, Gilardi‐Hebenstreit P, et al. Chimeric EWSR1‐FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite. Nat Genet 2015; 47: 1073 – 1078.
dc.identifier.citedreferenceNielsen TO, Poulin NM, Ladanyi M. Synovial sarcoma: recent discoveries as a roadmap to new avenues for therapy. Cancer Discov 2015; 5: 124 – 134.
dc.identifier.citedreferenceSvejstrup JQ. Synovial sarcoma mechanisms: a series of unfortunate events. Cell 2013; 153: 11 – 12.
dc.identifier.citedreferenceTakeuchi K, Soda M, Togashi Y, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med 2012; 18: 378 – 381.
dc.identifier.citedreferenceChmielecki J, Crago AM, Rosenberg M, et al. Whole‐exome sequencing identifies a recurrent NAB2‐STAT6 fusion in solitary fibrous tumors. Nat Genet 2013; 45: 131 – 132.
dc.identifier.citedreferenceRobinson DR, Wu YM, Kalyana‐Sundaram S, et al. Identification of recurrent NAB2‐STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet 2013; 45: 180 – 185.
dc.identifier.citedreferenceKouba E, Simper NB, Chen S, et al. Solitary fibrous tumour of the genitourinary tract: a clinicopathological study of 11 cases and their association with the NAB2‐STAT6 fusion gene. J Clin Pathol 2016 Oct 31. pii: jclinpath-2016-204088. doi: 10.1136/jclinpath-2016-204088. [Epub ahead of print].
dc.identifier.citedreferenceMohajeri A, Tayebwa J, Collin A, et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosomes Cancer 2013; 52: 873 – 886.
dc.identifier.citedreferenceGambarotti M, Benini S, Gamberi G, et al. CIC‐DUX4 Fusion‐positive round cell sarcomas of soft tissue and bone: a single institution morphologic and molecular analysis of 7 cases. Histopathology 2016; 69: 624–634.
dc.identifier.citedreferenceChoi EY, Thomas DG, McHugh JB, et al. Undifferentiated small round cell sarcoma with t(4;19)(q35;q13.1) CIC‐DUX4 fusion: a novel highly aggressive soft tissue tumor with distinctive histopathology. Am J Surg Pathol 2013; 37: 1379 – 1386.
dc.identifier.citedreferenceChoi E, Williamson SR, Montironi R, et al. Inflammatory myofibroblastic tumour of the urinary bladder: the role of immunoglobulin G4 and the comparison of two immunohistochemical antibodies and fluorescence in‐situ hybridization for the detection of anaplastic lymphoma kinase alterations. Histopathology 2015; 67: 20 – 38.
dc.identifier.citedreferenceMano H. ALKoma: a cancer subtype with a shared target. Cancer Discov 2012; 2: 495 – 502.
dc.identifier.citedreferenceHallberg B, Palmer RH. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer 2013; 13: 685 – 700.
dc.identifier.citedreferenceButrynski JE, D’adamo DR, Hornick JL, et al. Crizotinib in ALK‐rearranged inflammatory myofibroblastic tumor. N Engl J Med 2010; 363: 1727 – 1733.
dc.identifier.citedreferenceGaudichon J, Jeanne‐Pasquier C, Deparis M, et al. Complete and repeated response of a metastatic ALK‐rearranged inflammatory myofibroblastic tumor to Crizotinib in a teenage girl. J Pediatr Hematol Oncol 2016; 38: 308 – 311.
dc.identifier.citedreferenceYamamoto H, Yoshida A, Taguchi K, et al. ALK, ROS1 and NTRK3 gene rearrangements in inflammatory myofibroblastic tumours. Histopathology 2016; 69: 72 – 83.
dc.identifier.citedreferenceAntonescu CR, Suurmeijer AJ, Zhang L, et al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol 2015; 39: 957 – 967.
dc.identifier.citedreferenceHodge JC, Pearce KE, Wang X, et al. Molecular cytogenetic analysis for TFE3 rearrangement in Xp11.2 renal cell carcinoma and alveolar soft part sarcoma: validation and clinical experience with 75 cases. Mod Pathol 2014; 27: 113 – 127.
dc.identifier.citedreferenceBrown RE, Buryanek J, Katz AM, et al. Alveolar rhabdomyosarcoma: morphoproteomics and personalized tumor graft testing further define the biology of PAX3‐FKHR(FOXO1) subtype and provide targeted therapeutic options. Oncotarget 2016; 7: 46263 – 46272.
dc.identifier.citedreferenceThway K, Rockcliffe S, Gonzalez D, et al. Utility of sarcoma‐specific fusion gene analysis in paraffin‐embedded material for routine diagnosis at a specialist centre. J Clin Pathol 2010; 63: 508 – 512.
dc.identifier.citedreferenceWang WL, Mayordomo E, Zhang W, et al. Detection and characterization of EWSR1/ATF1 and EWSR1/CREB1 chimeric transcripts in clear cell sarcoma (melanoma of soft parts). Mod Pathol 2009; 22: 1201 – 1209.
dc.identifier.citedreferenceHisaoka M, Ishida T, Kuo TT, et al. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol 2008; 32: 452 – 460.
dc.identifier.citedreferenceShaw AT, Engelman JA. ALK in lung cancer: past, present, and future. J Clin Oncol 2013; 31: 1105 – 1111.
dc.identifier.citedreferenceCheng L, Alexander RE, Maclennan GT, et al. Molecular pathology of lung cancer: key to personalized medicine. Mod Pathol 2012; 25: 347 – 369.
dc.identifier.citedreferenceSwanton C, Govindan R. Clinical implications of genomic discoveries in lung cancer. N Engl J Med 2016; 374: 1864 – 1873.
dc.identifier.citedreferenceHirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments. Lancet 2017; 389: 299 – 311.
dc.identifier.citedreferenceAlkan A, Koksoy EB, Utkan G. First‐line crizotinib in ALK‐positive lung cancer. N Engl J Med 2015; 372: 781 – 782.
dc.identifier.citedreferenceShen L, Ji HF. Ceritinib in ALK‐rearranged non‐small‐cell lung cancer. N Engl J Med 2014; 370: 2537.
dc.identifier.citedreferenceMorton MJ, Zhang S, Lopez‐Beltran A, et al. Telomere shortening and chromosomal abnormalities in intestinal metaplasia of the urinary bladder. Clin Cancer Res 2007; 13: 6232 – 6236.
dc.identifier.citedreferenceBergethon K, Shaw AT, Ou SH, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 2012; 30: 863 – 870.
dc.identifier.citedreferenceUguen A, De Braekeleer M. ROS1 fusions in cancer: a review. Future Oncol 2016; 12: 1911 – 1928.
dc.identifier.citedreferenceCharest A, Lane K, McMahon K, et al. Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21). Genes Chromosomes Cancer 2003; 37: 58 – 71.
dc.identifier.citedreferenceDavies KD, Doebele RC. Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 2013; 19: 4040 – 4045.
dc.identifier.citedreferenceGu TL, Deng X, Huang F, et al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS One 2011; 6: e15640.
dc.identifier.citedreferenceLee J, Lee SE, Kang SY, et al. Identification of ROS1 rearrangement in gastric adenocarcinoma. Cancer 2013; 119: 1627 – 1635.
dc.identifier.citedreferenceAisner DL, Nguyen TT, Paskulin DD, et al. ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral heterogeneity for molecular drivers. Mol Cancer Res 2014; 12: 111 – 118.
dc.identifier.citedreferenceMulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer 2014; 14: 173 – 186.
dc.identifier.citedreferenceShaw AT, Hsu PP, Awad MM, et al. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat Rev Cancer 2013; 13: 772 – 787.
dc.identifier.citedreferenceVargas AJ, Harris CC. Biomarker development in the precision medicine era: lung cancer as a case study. Nat Rev Cancer 2016; 16: 525 – 537.
dc.identifier.citedreferenceWang R, Hu H, Pan Y, et al. RET fusions define a unique molecular and clinicopathologic subtype of non‐small‐cell lung cancer. J Clin Oncol 2012; 30: 4352 – 4359.
dc.identifier.citedreferenceDrilon A, Wang L, Hasanovic A, et al. Response to Cabozantinib in patients with RET fusion‐positive lung adenocarcinomas. Cancer Discov 2013; 3: 630 – 635.
dc.identifier.citedreferenceTravis WD, Brambilla E, Allen P. Burke, Alexander Marx, Andrew G. Nicholson (Eds). World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart 4th Edn. IARC Press, Lyon, 2015.
dc.identifier.citedreferenceThway K, Nicholson AG, Lawson K, et al. Primary pulmonary myxoid sarcoma with EWSR1‐CREB1 fusion: a new tumor entity. Am J Surg Pathol 2011; 35: 1722 – 1732.
dc.identifier.citedreferenceMoch H, Humphrey PA, Ulbright TM, et al. WHO Classification of Tumors of the Uronary System and Male Genital Organ ( 4th edn). International Agency for Research on Cancer (IARC) Press: Lyon, France, 2016.
dc.identifier.citedreferenceSmith NE, Illei PB, Allaf M, et al. t(6;11) renal cell carcinoma (RCC): expanded immunohistochemical profile emphasizing novel RCC markers and report of 10 new genetically confirmed cases. Am J Surg Pathol 2014; 38: 604 – 614.
dc.identifier.citedreferenceKauffman EC, Ricketts CJ, Rais‐Bahrami S, et al. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat Rev Urol 2014; 11: 465 – 475.
dc.identifier.citedreferenceArgani P. MiT family translocation renal cell carcinoma. Semin Diagn Pathol 2015; 32: 103 – 113.
dc.identifier.citedreferenceArgani P, Zhong M, Reuter VE, et al. TFE3‐fusion variant analysis defines specific clinicopathologic associations among Xp11 translocation cancers. Am J Surg Pathol 2016; 40: 723 – 737.
dc.identifier.citedreferenceRao Q, Williamson SR, Zhang S, et al. TFE3 greak‐apart FISH has a higher sensitivity for Xp11.2 translocation‐associated renal cell carcinoma compared with TFE3 or cathepsin K immunohistochemical staining alone: expanding the morphologic spectrum. Am J Surg Pathol 2013; 37: 804 – 815.
dc.identifier.citedreferenceMalouf GG, Su X, Yao H, et al. Next‐generation sequencing of translocation renal cell carcinoma reveals novel RNA splicing partners and frequent mutations of chromatin‐remodeling genes. Clin Cancer Res 2014; 20: 4129 – 4140.
dc.identifier.citedreferenceRao Q, Liu B, Cheng L, et al. Renal cell carcinomas with t(6;11)(p21;q12): a clinicopathologic study emphasizing unusual morphology, novel alpha‐TFEB gene fusion point, immunobiomarkers, and ultrastructural features, as well as detection of the gene fusion by fluorescence in situ hybridization. Am J Surg Pathol 2012; 36: 1327 – 1338.
dc.identifier.citedreferenceLopez‐Beltran A, Cheng L, Raspollini MR, et al. SMARCB1/INI1 genetic alterations in renal medullary carcinomas. Eur Urol 2016; 69: 1062 – 1064.
dc.identifier.citedreferenceCheng JX, Tretiakova M, Gong C, et al. Renal medullary carcinoma: rhabdoid features and the absence of INI1 expression as markers of aggressive behavior. Mod Pathol 2008; 21: 647 – 652.
dc.identifier.citedreferenceCalderaro J, Masliah‐Planchon J, Richer W, et al. Balanced translocations disrupting SMARCB1 are hallmark recurrent genetic alterations in renal medullary carcinomas. Eur Urol 2016; 69: 1055 – 1061.
dc.identifier.citedreferenceMarino‐Enriquez A, Ou WB, Weldon CB, et al. ALK rearrangement in sickle cell trait‐associated renal medullary carcinoma. Genes Chromosomes Cancer 2011; 50: 146 – 153.
dc.identifier.citedreferenceSukov WR, Hodge JC, Lohse CM, et al. ALK alterations in adult renal cell carcinoma: frequency, clinicopathologic features and outcome in a large series of consecutively treated patients. Mod Pathol 2012; 25: 1516 – 1525.
dc.identifier.citedreferenceKusano H, Togashi Y, Akiba J, et al. Two cases of renal cell carcinoma harboring a novel STRN‐ALK fusion gene. Am J Surg Pathol 2016; 40: 761 – 769.
dc.identifier.citedreferenceTomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644 – 648.
dc.identifier.citedreferenceJones DT, Hutter B, Jager N, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 2013; 45: 927 – 932.
dc.identifier.citedreferenceTomlins SA, Laxman B, Dhanasekaran SM, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 2007; 448: 595 – 599.
dc.identifier.citedreferenceTomlins SA, Bjartell A, Chinnaiyan AM, et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 2009; 56: 275 – 286.
dc.identifier.citedreferencePalanisamy N, Ateeq B, Kalyana‐Sundaram S, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med 2010; 16: 793 – 798.
dc.identifier.citedreferenceYoshimoto M, Joshua AM, Chilton‐Macneill S, et al. Three‐color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia 2006; 8: 465 – 469.
dc.identifier.citedreferenceFisher KW, Zhang S, Wang M, et al. TMPRSS2‐ERG gene fusion is rare compared to PTEN deletions in stage T1a prostate cancer. Mol Carcinog 2017; 56: 814 – 820.
dc.identifier.citedreferenceWilliamson SR, Zhang S, Yao JL, et al. ERG‐TMPRSS2 rearrangement is shared by concurrent prostatic adenocarcinoma and prostatic small cell carcinoma and absent in small cell carcinoma of the urinary bladder: evidence supporting monoclonal origin. Mod Pathol 2011; 24: 1120 – 1127.
dc.identifier.citedreferenceLi Z, Tognon CE, Godinho FJ, et al. ETV6‐NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell 2007; 12: 542 – 558.
dc.identifier.citedreferenceDel Castillo M, Chibon F, Arnould L, et al. Secretory breast carcinoma: a histopathologic and genomic spectrum characterized by a joint specific ETV6‐NTRK3 gene fusion. Am J Surg Pathol 2015; 39: 1458 – 1467.
dc.identifier.citedreferenceTognon C, Knezevich SR, Huntsman D, et al. Expression of the ETV6‐NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002; 2: 367 – 376.
dc.identifier.citedreferenceBass AJ, Lawrence MS, Brace LE, et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A‐TCF7L2 fusion. Nat Genet 2011; 43: 964 – 968.
dc.identifier.citedreferenceSeshagiri S, Stawiski EW, Durinck S, et al. Recurrent R‐spondin fusions in colon cancer. Nature 2012; 488: 660 – 664.
dc.identifier.citedreferenceXing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 2013; 13: 184 – 199.
dc.identifier.citedreferenceCabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet 2016; 388: 2783–2795.
dc.identifier.citedreferenceCancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014; 159: 676 – 690.
dc.identifier.citedreferenceNikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 2011; 7: 569 – 580.
dc.identifier.citedreferenceRomei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto‐oncogene in thyroid carcinoma. Nat Rev Endocrinol 2016; 12: 192 – 202.
dc.identifier.citedreferenceKelly LM, Barila G, Liu P, et al. Identification of the transforming STRN‐ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A 2014; 111: 4233 – 4238.
dc.identifier.citedreferenceRaman P, Koenig RJ. Pax‐8‐PPAR‐gamma fusion protein in thyroid carcinoma. Nat Rev Endocrinol 2014; 10: 616 – 623.
dc.identifier.citedreferenceCaria P, Frau DV, Dettori T, et al. Optimizing detection of RET and PPARg rearrangements in thyroid neoplastic cells using a home‐brew tetracolor probe. Cancer Cytopathol 2014; 122: 377 – 385.
dc.identifier.citedreferenceSharifah NA, Zakaria Z, Chia WK. FISH analysis using PPAR gamma‐specific probes for detection of PAX8‐PPAR gamma translocation in follicular thyroid neoplasms. Methods Mol Biol 2013; 952: 187 – 196.
dc.identifier.citedreferenceAmelio AL, Fallahi M, Schaub FX, et al. CRTC1/MAML2 gain‐of‐function interactions with MYC create a gene signature predictive of cancers with CREB‐MYC involvement. Proc Natl Acad Sci U S A 2014; 111: E3260 – E3268.
dc.identifier.citedreferenceTonon G, Modi S, Wu L, et al. t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a notch signaling pathway. Nat Genet 2003; 33: 208 – 213.
dc.identifier.citedreferenceAnzick SL, Chen WD, Park Y, et al. Unfavorable prognosis of CRTC1‐MAML2 positive mucoepidermoid tumors with CDKN2A deletions. Genes Chromosomes Cancer 2010; 49: 59 – 69.
dc.identifier.citedreferenceWysocki PT, Izumchenko E, Meir J, et al. Adenoid cystic carcinoma: emerging role of translocations and gene fusions. Oncotarget 2016; 7: 66239–66254.
dc.identifier.citedreferenceRamsay RG, Gonda TJ. MYB function in normal and cancer cells. Nat Rev Cancer 2008; 8: 523 – 534.
dc.identifier.citedreferenceWest RB, Kong C, Clarke N, et al. MYB expression and translocation in adenoid cystic carcinomas and other salivary gland tumors with clinicopathologic correlation. Am J Surg Pathol 2011; 35: 92 – 99.
dc.identifier.citedreferenceStenman G, Persson F, Andersson MK. Diagnostic and therapeutic implications of new molecular biomarkers in salivary gland cancers. Oral Oncol 2014; 50: 683 – 690.
dc.identifier.citedreferenceNorth JP, Garrido MC, Kolaitis NA, et al. Fluorescence in situ hybridization as an ancillary tool in the diagnosis of ambiguous melanocytic neoplasms: a review of 804 cases. Am J Surg Pathol 2014; 38: 824 – 831.
dc.identifier.citedreferenceSkalova A, Vanecek T, Sima R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6‐NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol 2010; 34: 599 – 608.
dc.identifier.citedreferenceSkalova A, Weinreb I, Hyrcza M, et al. Clear cell myoepithelial carcinoma of salivary glands showing EWSR1 rearrangement: molecular analysis of 94 salivary gland carcinomas with prominent clear cell component. Am J Surg Pathol 2015; 39: 338 – 348.
dc.identifier.citedreferenceMajewska H, Skalova A, Stodulski D, et al. Mammary analogue secretory carcinoma of salivary glands: a new entity associated with ETV6 gene rearrangement. Virchows Arch 2015; 466: 245 – 254.
dc.identifier.citedreferenceConnor A, Perez‐Ordonez B, Shago M, et al. Mammary analog secretory carcinoma of salivary gland origin with the ETV6 gene rearrangement by FISH: expanded morphologic and immunohistochemical spectrum of a recently described entity. Am J Surg Pathol 2012; 36: 27 – 34.
dc.identifier.citedreferenceAntonescu CR, Katabi N, Zhang L, et al. EWSR1‐ATF1 fusion is a novel and consistent finding in hyalinizing clear‐cell carcinoma of salivary gland. Genes Chromosomes Cancer 2011; 50: 559 – 570.
dc.identifier.citedreferenceKao YC, Lan J, Tai HC, et al. Angiomatoid fibrous histiocytoma: clinicopathological and molecular characterisation with emphasis on variant histomorphology. J Clin Pathol 2014; 67: 210 – 215.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.