Show simple item record

Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies

dc.contributor.authorSavage, Anna C.
dc.contributor.authorArbic, Brian K.
dc.contributor.authorRichman, James G.
dc.contributor.authorShriver, Jay F.
dc.contributor.authorAlford, Matthew H.
dc.contributor.authorBuijsman, Maarten C.
dc.contributor.authorThomas Farrar, J.
dc.contributor.authorSharma, Hari
dc.contributor.authorVoet, Gunnar
dc.contributor.authorWallcraft, Alan J.
dc.contributor.authorZamudio, Luis
dc.date.accessioned2017-05-10T17:47:35Z
dc.date.available2018-05-04T20:56:59Zen
dc.date.issued2017-03
dc.identifier.citationSavage, Anna C.; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Alford, Matthew H.; Buijsman, Maarten C.; Thomas Farrar, J.; Sharma, Hari; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis (2017). "Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies." Journal of Geophysical Research: Oceans 122(3): 2519-2538.
dc.identifier.issn2169-9275
dc.identifier.issn2169-9291
dc.identifier.urihttps://hdl.handle.net/2027.42/136674
dc.description.abstractHigh horizontal‐resolution (1/12.5° and 1/25°) 41‐layer global simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea surface height (SSH) variability. The HYCOM output is separated into steric and nonsteric and into subtidal, diurnal, semidiurnal, and supertidal frequency bands. The model SSH output is compared to two data sets that offer some geographical coverage and that also cover a wide range of frequencies—a set of 351 tide gauges that measure full SSH and a set of 14 in situ vertical profilers from which steric SSH can be calculated. Three of the global maps are of interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) two‐dimensional swath altimeter mission: (1) maps of the total and (2) nonstationary internal tidal signal (the latter calculated after removing the stationary internal tidal signal via harmonic analysis), with an average variance of 1.05 and 0.43 cm2, respectively, for the semidiurnal band, and (3) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum, with an average variance of 0.15 cm2. Stationary internal tides (which are predictable), nonstationary internal tides (which will be harder to predict), and nontidal internal gravity waves (which will be very difficult to predict) may all be important sources of high‐frequency “noise” that could mask lower frequency phenomena in SSH measurements made by the SWOT mission.Key PointsInternal gravity waves and nonstationary internal tides have nonnegligible sea surface height signaturesHigh‐resolution global ocean models are beginning to resolve the internal gravity wave continuumInternal gravity waves and nonstationary internal tides may cause contamination in upcoming satellite altimeter missions
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge Univ. Press
dc.subject.otherinternal tides
dc.subject.otherspectral density
dc.subject.otherinternal gravity waves
dc.titleFrequency content of sea surface height variability from internal gravity waves to mesoscale eddies
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136674/1/jgrc22189.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136674/2/jgrc22189_am.pdf
dc.identifier.doi10.1002/2016JC012331
dc.identifier.sourceJournal of Geophysical Research: Oceans
dc.identifier.citedreferenceRay, R. D., and E. D. Zaron ( 2016 ), M 2 internal tides and their observed wavenumber spectra from satellite altimetry, J. Phys. Oceanogr., 46, 3 – 22, doi: 10.1175/JPO-D-15-0065.1.
dc.identifier.citedreferenceLe Traon, P. Y., and R. Morrow ( 2001 ), Ocean currents and eddies, in Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, edited by L.‐L. Fu and A. Cazanave, chap. 3, pp. 171 – 215, Academic, San Diego, Calif.
dc.identifier.citedreferenceMetzger, E. J., O. M. Smedstad, P. J. Thoppil, H. E. Hurlburt, D. S. Franklin, G. Peggion, J. F. Shriver, and A. J. Wallcraft ( 2010 ), Validation test report for the global ocean forecast system V3.0‐1/12 ° HYCOM/NCODA: Phase II, NRL Memo. Rep. NRL/MR/7320‐10‐9236, Stennis Space Cent., Hancock, Miss.
dc.identifier.citedreferenceMüller, M., B. K. Arbic, J. G. Richman, J. F. Shriver, E. L. K. R. B. Scott, A. J. Wallcraft, and L. Zamudio ( 2015 ), Toward and internal gravity wave spectrum in global ocean models, Geophys. Res. Lett., 42, 3474 – 3481, doi: 10.1002/2015GL063365.
dc.identifier.citedreferenceMunk, W., and C. Wunsch ( 1998 ), Abysall recipes II: Energetics of tidal and wind mixing, Deep Sea Res., Part I, 45, 1977 – 2010.
dc.identifier.citedreferenceNgodock, H. E., I. Souopgui, A. J. Wallcraft, J. G. Richman, J. F. Shriver, and B. K. Arbic ( 2016 ), On improving the accuracy of the M 2 barotropic tides embedded in a high‐resolution global ocean circulation model, Ocean Modell., 97, 16 – 26, doi: 10.1016/j.ocemod.2015.10.011.
dc.identifier.citedreferencePattiaratchi, C. B., and E. M. S. Wijeratne ( 2009 ), Tide gauges observations of 2004‐2007 Indian Ocean tsunamis from Sri Lanka and Western Australia, Pure Appl. Geophys., 166, 233 – 258, doi: 10.1007/s00024-008-0434-5.
dc.identifier.citedreferencePonte, R., and P. Gaspar ( 1999 ), Regional analysis of the inverted barometer effect over the global ocean using TOPEX/POSEIDON data and model results, J. Geophys. Res., 104, 15,587 – 15,601, doi: 10.1029/1999JC900113.
dc.identifier.citedreferenceRay, R. D. ( 1998 ), Spectral analysis of highly aliased sea‐level signals, J. Geophys. Res., 103, 24,991 – 25,003.
dc.identifier.citedreferenceRay, R. D. ( 1999 ), A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2, Tech. Memo. NASA/TM‐1999‐209478, 58 pp., Natl. Aeronaut. and Space Admin.
dc.identifier.citedreferenceRay, R. D. ( 2007 ), Propogation of the overtide M 4 through the deep Atlantic Ocean, Geophys. Res. Lett., 34, L21602, doi: 10.1029/2007GL031618.
dc.identifier.citedreferenceRay, R. D., and G. T. Mitchum ( 1997 ), Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges, Prog. Oceanog., 40, 135 – 162, doi: 10.1016/S0079-6611(97)00025-6.
dc.identifier.citedreferenceGill, A. E. ( 1982 ), Atmosphere‐Ocean Dynamics, Academic, San Diego, Calif.
dc.identifier.citedreferenceRichman, J. G., B. K. Arbic, J. F. Shriver, E. J. Metzger, and A. J. Wallcraft ( 2012 ), Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides, J. Geophys. Res., 117, doi: 10.1029/2012JC008364.
dc.identifier.citedreferenceRocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis ( 2016 ), Mesoscale to submesoscale wavenumber spectra in Drake Passage, J. Phys. Oceanogr., 46, 601 – 620, doi: 10.1175/JPO-D-15-0087.1.
dc.identifier.citedreferenceRoemmich, D., and W. B. Owens ( 2000 ), The Argo project: Observing the global ocean with profiling floats, Oceanography, 13, 45 – 50, doi: 10.5670/oceanog.2000.33.
dc.identifier.citedreferenceShriver, J. F., and H. E. Hurlburt ( 2000 ), The effect of upper ocean eddies on the non‐steric contribution to the barotropic tide, Geophys. Res. Lett., 27, 2713 – 2716.
dc.identifier.citedreferenceShriver, J. F., B. K. Arbic, J. G. Richman, R. D. Ray, E. J. Metzger, A. J. Wallcraft, and P. G. Timko ( 2012 ), An evaluation of the barotropic and internal tides in a high resolution global ocean circulation model, J. Geophys. Res., 117, C10024, doi: 10.1029/2012JC008170.
dc.identifier.citedreferenceShriver, J. F., J. G. Richman, and B. K. Arbic ( 2014 ), How stationary are the internal tides in a high‐resolution global ocean circulation model?, J. Geophys. Res. Oceans, 119, 2769 – 2787, doi: 10.1002/2013JC009423.
dc.identifier.citedreferenceStammer, D., C. Wunsch, and R. M. Ponte ( 2000 ), De‐aliasing of global high‐frequency barotropic motions in altimeter observations, Geophys. Res. Lett., 27, 1175 – 1178.
dc.identifier.citedreferenceTierney, C. C., J. Whar, F. Bryan, and V. Zlotnicki ( 2000 ), Short‐period oceanic circulation: Implications for satellite altimetry, Geophys. Res. Lett, 27, 1255 – 1258.
dc.identifier.citedreferenceWeller, R. A., and S. P. Anderson ( 1996 ), Surface meteorology and air‐sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean‐Atmosphere Response Experiment, J. Clim., 9, 1960 – 1990.
dc.identifier.citedreferenceWunsch, C. ( 1991 ), Global‐scale surface variability from combined altimetric and tide gauge measurements, J. Geophys. Res., 96, 15,053 – 15,082.
dc.identifier.citedreferenceWunsch, C. ( 2010 ), Toward a midlatitude ocean frequency‐wavenumber spectral density and trend determination, J. Phys. Oceanogr., 40, 2264 – 2281, doi: 10.1175/2010JPO4376.1.
dc.identifier.citedreferenceWunsch, C., and D. Stammer ( 1995 ), The global frequency‐wavenumber spectrum of oceanic variability estimated from TOPEX/POSEIDON altimetric measurements, J. Geophys. Res., 100, 24,895 – 24,910.
dc.identifier.citedreferenceZantopp, R. J., and K. D. Leaman ( 1984 ), The feasibility of dynamic height determination from moored temperature sensors, J. Phys. Oceanogr., 14, 1399 – 1406.
dc.identifier.citedreferenceZaron, E. D. ( 2015 ), Non‐stationary internal tides observed using dual‐satellite altimetry, J. Phys. Oceanogr., 45, 2239 – 2246, doi: 10.1175/JPO-D-15-0020.1.
dc.identifier.citedreferenceZaron, E. D. ( 2017 ), Mapping the nonstationary internal tide with satellite altimetry, J. Geophys. Res. Oceans, 122, 539 – 554, doi: 10.1002/2016JC012487.
dc.identifier.citedreferenceZhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons ( 2016 ), Global observations of open‐ocean mode‐1 M 2 internal tides, J. Phys. Oceanogr., 46, 1657 – 1684, doi: 10.1175/JPO-D-15-0105.1.
dc.identifier.citedreferenceZilberman, N. V., M. A. Merrifield, G. S. Carter, D. S. Luther, M. D. Levine, and T. J. Boyd ( 2011 ), Incoherent nature of M 2 internal tides at the Hawaiian ridge, J. Phys. Oceanogr., 41, 2021 – 2036, doi: 10.1175/JPO-D-10-05009.1.
dc.identifier.citedreferenceAnsong, J. K., B. K. Arbic, M. C. Buijsman, J. G. Richman, J. F. Shriver, and A. J. Wallcraft ( 2015 ), Indirect evidence for substantial damping of low‐mode internal tides in the open ocean, J. Geophys. Res. Oceans, 120, 7997 – 8019, doi: 10.1002/2015JC010998.
dc.identifier.citedreferenceArbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons ( 2004 ), The accuracy of surface elevations in forward global barotropic and baroclinic tide models, Deep Sea Res., Part II, 51, 3069 – 3101, doi: 10.1016/j.dsr2.2004.09.014.
dc.identifier.citedreferenceArbic, B. K., J. X. Mitrovica, D. R. MacAyeal, and G. A. Milne ( 2008 ), On the factors behind large Laborador Sea tides during the last glacial cycle and the potential implications for Heinrich events, Paleoceanography, 23, PA3211, doi: 10.1029/2007PA001573.
dc.identifier.citedreferenceArbic, B. K., A. J. Wallcraft, and E. J. Metzger ( 2010 ), Concurrent simulation of the eddying general circulation and tides in a global ocean model, Ocean Modell., 32, 175 – 187, doi: 10.1016/j.ocemod.2010.01.007.
dc.identifier.citedreferenceArbic, B. K., J. G. Richman, J. F. Shriver, P. G. Timko, E. J. Metzger, and A. J. Wallcraft ( 2012 ), Global modeling of internal tides within an eddying ocean general circulation model, Oceanography, 25, 20 – 29, doi: 10.5670/oceanog.2012.38.
dc.identifier.citedreferenceBaker‐Yeboah, S., D. R. Watts, and D. A. Byrne ( 2009 ), Measurements of sea surface height variability in the eastern Atlantic from pressure sensor‐equipped inverted echo sounders: Baroclinic and barotropic components, J. Atmos. Oceanic Technol., 26, 2593 – 2609, doi: 10.1175/2009JTECHO659.1.
dc.identifier.citedreferenceBuijsman, M. C., B. K. Arbic, J. A. M. Green, R. W. Helber, J. G. Richman, J. F. Shriver, P. G. Timko, and A. J. Wallcraft ( 2015 ), Optimizing internal wave drag in a forward barotropic model with semidiurnal tides, Ocean Modell., 85, 42 – 55.
dc.identifier.citedreferenceBuijsman, M. C., J. K. Ansong, B. K. Arbic, J. G. Richman, J. F. Shriver, P. G. Timko, A. J. Wallcraft, C. B. Whalen, and Z. Zhao ( 2016 ), Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model, J. Phys. Oceanogr., 46, 1399 – 1419, doi: 10.1175/JPO-D-15-0074.1.
dc.identifier.citedreferenceCaldwell, P. C., M. A. Merrifield, and P. R. Thompson ( 2011 ), Sea level measured by tide gauges from the global oceans‐the Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA Natl. Cent. for Environ. Inf.
dc.identifier.citedreferenceCallies, J., and R. Ferrari ( 2013 ), Interpreting energy and tracer spectra of upper‐ocean turbulence in the submesoscale range (1‐200 km), J. Phys. Oceanogr., 43, 2456 – 2474, doi: 10.1175/JPO-D-13-063.1.
dc.identifier.citedreferenceCarrère, L., and F. Lyard ( 2003 ), Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing: Comparison with observations, Geophys. Res. Lett., 30 ( 6 ), 1275, doi: 10.1029/2002GL016473.
dc.identifier.citedreferenceCartwright, D. E. ( 1999 ), Tides: A Scientific History, 192 pp., Cambridge Univ. Press, Cambridge, U. K.
dc.identifier.citedreferenceChassignet, E. P., et al. ( 2009 ), Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM), Oceanography, 22, 64 – 76.
dc.identifier.citedreferenceColosi, J. A., and W. Munk ( 2006 ), Tales of the venerable Honolulu tide gauge, J. Phys. Oceanogr., 36, 967 – 996.
dc.identifier.citedreferenceDoherty, K. W., D. E. Frye, S. P. Lberatore, and J. M. Toole ( 1999 ), A moored profiling instrument, J. Atmos. Oceanic Technol., 16, 1816 – 1829, doi: 10.1175/1520-0426(1999)016<1816:AMPI>2.0.CO;2.
dc.identifier.citedreferenceDucet, N., P. Y. L. Traon, and G. Reverdin ( 2000 ), Global high‐resolution mapping of ocean circulation from TOPEX/Poseidon and ERS‐1 and −2, J. Geophys. Res., 105, 19,477 – 19,498, doi: 10.1029/2000JC900063.
dc.identifier.citedreferenceDushaw, B. D., P. F. Worcester, and M. A. Dzieciuch ( 2011 ), On the predictability of mode‐1 internal tides, Deep Sea Res., Part 1, 58, 677 – 698, doi: 10.1016/j.dsr.2011.04.002.
dc.identifier.citedreferenceEgbert, G. D., and R. D. Ray ( 2003 ), Semi‐diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry, Geophys. Res. Lett., 30 ( 17 ), 1907, doi: 10.1029/2003GL017676.
dc.identifier.citedreferenceEgbert, G. D., A. F. Bennett, and M. G. G. Foreman ( 1994 ), TOPEX/POSEIDON tides estimated using a global inverse model, J. Geophys. Res., 99, 24,821 – 24,852.
dc.identifier.citedreferenceEgbert, G. D., R. D. Ray, and B. G. Bills ( 2004 ), Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum, J. Geophys. Res., 109, C03003, doi: 10.1029/2003JC001973.
dc.identifier.citedreferenceFarrar, J. T., et al. ( 2015 ), Salinity and temperature balances at the SPURS central mooring during fall and winter, Oceanography, 28, 56 – 65, doi: 10.5670/oceanog.2015.06.
dc.identifier.citedreferenceFerrari, R., and C. Wunsch ( 2009 ), Ocean circulation kinetic energy: Resevoirs, sources, and sinks, Annu. Rev. Fluid Mech., 41, 253 – 282, doi: 10.1146/annurev.fluid.40.111406.102139.
dc.identifier.citedreferenceFu, L. L., and A. Cazenave (Eds.) ( 2001 ), Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, Academic, San Diego, Calif.
dc.identifier.citedreferenceFu, L. L., and D. B. Chelton ( 2001 ), Large‐scale ocean circulation, in Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, edited by L.‐L. Fu and A. Cazanave, chap. 2, pp. 133 – 169, Academic, San Diego, Calif.
dc.identifier.citedreferenceFu, L. L., D. Alsdorf, R. Morrow, E. Rodriguez, and N. Mognard (Eds.) ( 2012 ), SWOT: The Surface Water and Ocean Topography Mission: Wide‐Swatch Altimetric Measurement of Water Elevation on Earth, 228 pp., Jet Propul. Lab., Pasadena, Calif.
dc.identifier.citedreferenceGarrett, C., and W. Munk ( 1975 ), Space‐time scales of internal waves: A progress report, J. Geophys. Res., 80, 291 – 297, doi: 10.1029/JC080i002p00291.
dc.identifier.citedreferenceGlazman, R. E., and B. Cheng ( 1999 ), Altimeter observations of baroclinic oceanic inertia‐gravity wave turbulence, Proc. R. Soc. A, 455, 90 – 123, doi: 10.1098/rspa.1999.0304.
dc.identifier.citedreferenceHogan, T. F., et al. ( 2014 ), The navy global environemental model, Oceanography, 27, 116 – 125, doi: 10.5670/oceanog.2014.73.
dc.identifier.citedreferenceJayne, S. R., and L. C. St. Laurent ( 2001 ), Parameterizing tidal dissipation over rough topography, Geophys. Res. Lett., 28, 811 – 814.
dc.identifier.citedreferenceKnauss, J. A. ( 1997 ), Introduction to Physical Oceanography, 2nd ed., Waveland Press, Long Grove, Ill.
dc.identifier.citedreferenceLe Provost, C. ( 2001 ), Ocean tides, in Satellite Altimetry and Earth Sciences, edited by L.‐L. Fu and A. Cazenave, chap. 6, pp. 267 – 304, Academic, San Diego, Calif.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.