Show simple item record

Iron isotopic evolution during fractional crystallization of the uppermost Bushveld Complex layered mafic intrusion

dc.contributor.authorBilenker, Laura D.
dc.contributor.authorVanTongeren, Jill A.
dc.contributor.authorLundstrom, Craig C.
dc.contributor.authorSimon, Adam C.
dc.date.accessioned2017-05-10T17:47:37Z
dc.date.available2018-05-04T20:56:59Zen
dc.date.issued2017-03
dc.identifier.citationBilenker, Laura D.; VanTongeren, Jill A.; Lundstrom, Craig C.; Simon, Adam C. (2017). "Iron isotopic evolution during fractional crystallization of the uppermost Bushveld Complex layered mafic intrusion." Geochemistry, Geophysics, Geosystems 18(3): 956-972.
dc.identifier.issn1525-2027
dc.identifier.issn1525-2027
dc.identifier.urihttps://hdl.handle.net/2027.42/136675
dc.description.abstractWe present δ56Fe (56Fe/54Fe relative to standard IRMM‐014) data from whole rock and magnetite of the Upper and Upper Main Zones (UUMZ) of the Bushveld Complex. With it, we assess the role of fractional crystallization in controlling the Fe isotopic evolution of a mafic magma. The UUMZ evolved by fractional crystallization of a dry tholeiitic magma to produce gabbros and diorites with cumulus magnetite and fayalitic olivine. Despite previous experimental work indicating a potential for magnetite crystallization to drastically change magma δ56Fe, we observe no change in whole rock δ56Fe above and below magnetite saturation. We also observe no systematic change in whole rock δ56Fe with increasing stratigraphic height, and only a small variation in δ56Fe in magnetite separates above magnetite saturation. Whole rock δ56Fe (errors twice standard deviation, ±2σ) throughout the UUMZ ranges from −0.01 ±0.03‰ to 0.21 ±0.09‰ (δ56FeaverageWR = 0.10 ±0.09‰; n = 21, isotopically light outlier: δ56FeWR = −0.15‰), and magnetites range from 0.28 ±0.04‰ to 0.86 ±0.07‰ (δ56FeaverageMgt = 0.50 ±0.15‰; n = 20), similar to values previously reported for other layered intrusions. We compare our measured δ56FeWR to a model that incorporates the changing normative mineralogy, calculated temperatures, and published fractionation factors of Fe‐bearing phases throughout the UUMZ and produces δ56FeWR values that evolve only in response to fractional crystallization. Our results show that the Fe isotopic composition of a multiply saturated (multiple phases on the liquidus) magma is unlikely to change significantly during fractional crystallization of magnetite due to the competing fractionation of other Fe‐bearing cumulus phases.Key PointsWhole rock and magnetite separates from the uppermost portion of the Bushveld Complex were analyzed for their Fe isotope compositionsWe find no systematic variation in whole rock or magnetite Fe isotope ratios with stratigraphic height85% crystallization of a dry tholeiitic multiply‐saturated magma does not significantly fractionate Fe isotopes
dc.publisherInst. of Min. Metall
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBushveld Complex
dc.subject.otheriron isotope
dc.subject.otherlayered intrusion
dc.subject.otherfractional crystallization
dc.titleIron isotopic evolution during fractional crystallization of the uppermost Bushveld Complex layered mafic intrusion
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136675/1/ggge21257_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136675/2/ggge21257.pdf
dc.identifier.doi10.1002/2016GC006660
dc.identifier.sourceGeochemistry, Geophysics, Geosystems
dc.identifier.citedreferenceTegner, C., R. G. Cawthorn, and F. J. Kruger ( 2006 ), Cyclicity in the Main and Upper Zones of the Bushveld Complex, South Africa: Crystallization from a Zoned Magma Sheet, J. Petrol., 47, 2257 – 2279, doi: 10.1093/petrology/egl043.
dc.identifier.citedreferenceRoskosz M., C. K. I. Cio, N. Dauphas, W. Bi, F. L. H. Tissot, M. Y. Hu, J. Zhao, and E. E. Alp ( 2015 ), Spinel‐olivine‐pyroxene equilibrium iron isotopic fractionation and applications to natural peridotites, Geochim. Cosmochim. Acta, 169, 184 – 199, doi: 10.1016/j.gca.2015.07.035.
dc.identifier.citedreferenceSchoenberg, R., M.A.W. Marks, J.A. Schuessler, F. von Blanckenburg, and G. Markl ( 2009 ), Fe isotope systematics of coexisting amphibole and pyroxene in the alkaline igneous rock suite of the Ilimaussaq Complex, South Greenland, Chem. Geol., 258, 65 – 77, 10.1016/j.chemgeo.2008.06.023.
dc.identifier.citedreferenceSchuessler, J. A., R. Schoenberg, H. Behrens, and F. von Blanckenburg ( 2007 ), The experimental calibration of the iron isotope fractionation factor between pyrrhotite and peralkaline rhyoltic melt, Geochim. Cosmochim. Acta, 71, 417 – 433, doi: 10.1016/j.gca.2006.09.012.
dc.identifier.citedreferenceSchuessler, J. A., R. Schoenberg, and O. Sigmarsson ( 2009 ), Iron and lithium isotope systematics of the Hekla volcano, Iceland: Evidence for Fe isotope fractionation during magma differentiation, Chem. Geol., 258, 78 – 91, doi: 10.1016/j.chemgeo.2008.06.021.
dc.identifier.citedreferenceScoon, R. N., and A. A. Mitchell ( 1994 ), Discordant iron‐rich ultramafic pegmatites in the Bushveld Complex and their relationship to iron‐rich intercumulus and residual liquids, J. Petrol., 35, 881 – 917.
dc.identifier.citedreferenceShahar, A., E. D. Young, and C. E. Manning ( 2008 ), Equilibrium high‐temperature Fe isotope fractionation between fayalite and magnetite: An experimental calibration, Earth Planet. Sci. Lett., 268, 330 – 338, doi: 10.1016/j.epsl.2008.01.026.
dc.identifier.citedreferenceSossi, P. A. and H. O’Neill ( 2017 ), The effect of bonding environment on iron isotope fractionation between minerals at high temperature, Geochim. Cosmochim. Acta, 196, 121 – 143, doi: 10.1016/j.gca.2016.09.017.
dc.identifier.citedreferenceSossi, P. A., J. D. Foden, and G. P. Halverson ( 2012 ), Redox‐controlled iron isotope fractionation during magmatic differentiation: An example from the Red Hill intrusion, S. Tasmania, Contrib. Mineral. Petrol., 164, 757 – 779, doi: 10.1007/s00410-012-0769-x.
dc.identifier.citedreferenceSun, C., Y. Liang, L. Ashwal, and J. VanTongeren ( 2013 ), Temperature variations along stratigraphic height across the Bushveld Complex with implications for magma chamber processes in layered intrusions, Geol. Soc. Am. Abstr. Programs, 45, 390.
dc.identifier.citedreferenceTelus, M., N. Dauphas, F. Moynier, F. L. H. Tissot, F‐Z. Teng, P. I. Nabelek, P. R. Craddock, and L. A. Groat ( 2012 ), Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: The tale from migmatites, granitoids, and pegmatites, Geochim. Cosmochim. Acta, 97, 247 – 265, doi: 10.1016/j.gca.2012.08.024.
dc.identifier.citedreferenceTeng, F., N. Dauphas, and R. T. Helz ( 2008 ), Iron isotope fractionation during magmatic differentiation in Kilauea Iki Lava Lake, Science, 320, 1620 – 1622, doi: 10.1126/science.1157166.
dc.identifier.citedreferenceTeng, F., W. F. McDonough, R. L. Rudnick, and R. J. Walker ( 2011 ), Diffusion‐driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite, Earth Planet. Sci. Lett., 243, 701 – 710, doi: 10.1016/j.epsl.2006.01.036.
dc.identifier.citedreferenceVanTongeren, J. A., and E. A. Mathez ( 2012 ), Large‐scale liquid immiscibility at the top of the Bushveld Complex, Geology, 40, 491 – 494, doi: 10.1130/G32980.1.
dc.identifier.citedreferenceVanTongeren, J. A., and E. A. Mathez ( 2013 ), Incoming magma composition and style of recharge below the Pyroxenite Marker, Eastern Bushveld Complex, South Africa, J. Petrol., 54, 1585 – 1605, doi: 10.1093/petrology/egt024.
dc.identifier.citedreferenceVanTongeren, J. A., E. A. Mathez, and P. B. Kelemen ( 2010 ), A felsic end to Bushveld differentiation, J. Petrol., 51, 1891 – 1942, doi: 10.1093/petrology/egq042.
dc.identifier.citedreferenceWang, K. ( 2013 ), Iron isotope cosmochemistry, PhD dissertation, Dept. Earth and Planet. Sci., Wash. Univ., in St. Louis, St. Louis, Washington, D. C.
dc.identifier.citedreferenceWilliams, H. M., A. H. Peslier, C. McCammon, A. N. Halliday, S. Levasseur, N. Teutsch, and J.‐P. Burg ( 2005 ), Systematic iron isotope variations in mantle rocks and minerals: The effects of partial melting and oxygen fugacity, Earth Planet. Sci. Lett., 235, 435 – 452, doi: 10.1016/j.epsl.2005.04.020.
dc.identifier.citedreferenceWombacher F., A. Eisenhauer, A. Heuser, and S. Weyer ( 2009 ), Separation of Mg, Ca and Fe from geological reference materials for stable isotope ratio analyses by MC‐ICP‐MS and double‐spike TIMS, J. Anal. At. Spectrom., 24, 627 – 636, doi: 10.1039/B820154D.
dc.identifier.citedreferenceYoung, E. D., C. E. Manning, E. A. Schauble, A. Shahar, C. A. Macris, C. Lazar, and M. Jordan ( 2015 ), High‐temperature equilibrium isotope fractionation of non‐traditional stable isotopes: Experiments, theory, and applications, Chem. Geol., 395, 176 – 195, doi: 10.1016/j.chemgeo.2014.12.0130009-2541.
dc.identifier.citedreferenceZambardi, T., C. C. Lundstrom, X. Li, and M. McCurry ( 2014 ), Fe and Si isotope variations at Cedar Butte volcano; insight into magmatic differentiation, Earth Planet. Sci. Lett., 405, 169 – 179, doi: 10.1016/j.epsl.2014.08.020.
dc.identifier.citedreferenceZhu D., B. Huiming, and Y. Liu ( 2015 ), Non‐traditional stable isotope behaviors in immiscible silica‐melts in a mafic magma chamber. Nature, Scientific Reports, doi: 10.1038/srep175.
dc.identifier.citedreferenceCawthorn, R. G., and L. D. Ashwal ( 2009 ), Origin of anorthosite and magnetitite layers in the Bushveld Complex, constrained by major element compositions of plagioclase, J. Petrol., 50, 1607 – 1637, doi: 10.1093/petrology/egp042.
dc.identifier.citedreferenceCawthorn, R. G., and T. S. McCarthy, ( 1980 ), Variations in Cr content of magnetite from the upper zone of the Bushveld complex: Evidence for heterogeneity and convection currents in magma chambers, Earth Planet. Sci. Lett., 46, 335 – 343, doi: 10.1016/0012-821X(80)90049-7.
dc.identifier.citedreferenceChen, L.‐M., X.‐Y. Song, X.‐K. Zhu, X.‐Q. Zhang, S.‐Y. Yu, and J.‐N. Yi, ( 2014 ), Iron isotope fractionation during crystallization and sub‐solidus re‐equilibration: Constraints from the Baima mafic layered intrusion, SW China, Chem. Geol., 380, 97 – 109, doi: 10.1016/j.chemgeo.2014.04.020.
dc.identifier.citedreferenceCraddock, P. R., and N. Dauphas ( 2011 ), Iron isotopic compositions of geological reference materials and chondrites, Geostand. Geoanal. Res., 35, 101 – 123, doi: 10.1016/j.epsl.2013.01.011.
dc.identifier.citedreferenceDauphas, N., P. R. Craddock, P. D. Asimow, V. C. Bennett, A. P. Nutman, and D. Ohnenstetter ( 2009 ), Iron isotopes may reveal the redox conditions of mantle melting from Archean to present, Earth Planet. Sci. Lett., 299, 255 – 267, doi: 10.1016/j.epsl.2009.09.029.
dc.identifier.citedreferenceDauphas, N., et al. ( 2014 ), Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust, Earth Planet. Sci. Lett., 308, 127 – 140, doi: 10.1016/j.epsl.2014.04.033.
dc.identifier.citedreferenceDziony, W., I. Horn, D. Lattard, J. Koepke, G. Steinhoefel, J. A. Schuessler, and F. Holtz ( 2014 ), In‐situ Fe isotope ratio determination in Fe‐Ti oxides and sulfides from drilled gabbros and basalt from the IODP Hole 1256D in the eastern equatorial Pacific, Chem. Geol., 363, 101 – 113, doi: 10.1016/j.chemgeo.2013.10.035.
dc.identifier.citedreferenceFischer L. A., M. Wang, B. Charlier, O. Namur, R. J. Roberts, I. V. Veksler, R. G. Cawthorn, and F. Holtz ( 2016 ), Immiscible iron‐ and silica‐rich liquids in the Upper Zone of the Bushveld Complex, Earth Planet. Sci. Lett., 443, 108 – 117.
dc.identifier.citedreferenceFoden, J., P. A. Sossi, and C. M. Wawryk ( 2015 ), Fe isotopes and the contrasting petrogenesis of A‐, I‐ and S‐type granite, Lithos, 212‐215, 32 – 44, doi: 10.1016/j.lithos.2014.10.015.
dc.identifier.citedreferenceHarney, D. M. W., and G. von Gruenewaldt ( 1995 ), Ore‐forming processes in the upper part of the Bushveld Complex, South Africa, J. Afr. Earth Sci., 20, 77 – 89.
dc.identifier.citedreferenceHeimann A., B. L. Beard, and C. M. Johnson ( 2008 ), The role of volatile exsolution and sub‐solidus fluid/rock interactions in producing high 56 Fe/ 54 Fe ratios in siliceous igneous rocks, Geochim. Cosmochim. Acta, 72, 4379 – 4396, doi: 10.1016/j.gca.2008.06.009.
dc.identifier.citedreferenceHuang, F., P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, and C. E. Lesher ( 2010 ), Isotope fractionation in silicate melts by thermal diffusion, Nature, 464, 396 – 400, doi: 10.1038/nature08840.
dc.identifier.citedreferenceIrvine, T. N., and M. R. Sharpe ( 1986 ), Magma mixing and the origin of stratiform oxide ore zones in the Bushveld and Stillwater Complexes, in Metallogeny of Basic and Ultrabasic Rocks, edited by M. J. Gallagher, et al., pp. 183 – 198, Inst. of Min. Metall., London, U. K.
dc.identifier.citedreferenceKlemm, D. D., R. Snethlage, R. M. Dehm, J. Henchel, and R. Schmidt‐Thomé ( 1982 ), The formation of chromite and titanomagnetite deposits within the Bushveld Igneous Complex, in Ore Genesis: The State of the Art, Special Publication of the Society for Geology Applied to Mineral Deposits, vol. 2, edited by G. C. Amstutz, pp. 351 – 370, Springer, Berlin, doi: 10.1007/978-3-642-68344-2_35.
dc.identifier.citedreferenceKruger, F. J., R. G. Cawthorn, and K. L. Walsh ( 1987 ), Strontium isotopic evidence against magma addition in the Upper Zone of the Bushveld Complex, Earth Planet. Sci. Lett., 84, 51 – 58, doi: 10.1016/0012-821X(87)90175-0.
dc.identifier.citedreferenceLiang, Y., C. Sun, L. D. Ashwal, and J. A. VanTongeren ( 2013 ), Spatial variations in temperature across the Bushveld layered intrusion revealed by REE‐in‐plagioclase‐pyroxene thermometers with implications for magma chamber processes, Abstract V54B‐07 presented at 2013 Fall Meeting, AGU, San Francisco, Calif.
dc.identifier.citedreferenceLiu, P.‐P., M.‐F. Zhou, B. Luais, D. Cividini, and C. Rollion‐Bard ( 2014 ), Disequilibrium iron isotopic fractionation during the high‐temperature magmatic differentiation of the Baima Fe‐Ti oxide‐bearing mafic intrusion, SW China, Earth Planet. Sci. Lett., 399, 21 – 29, doi: 10.1016/j.epsl.2014.05.0220012-821X.
dc.identifier.citedreferenceLundstrom, C. C. ( 2009 ), Hypothesis for the origin of convergent margin granitoids and Earth’s continental crust by thermal migration zone refining, Geochim. Cosmochim. Acta, 73, 5709 – 5729, doi: 10.1016/j.gca.2009.06.020.
dc.identifier.citedreferenceMathez, E. A., J. A. VanTongeren, and J. Schweitzer ( 2013 ), On the relationships between the Bushveld Complex and its felsic roof rocks, part 1: Petrogenesis of Rooiberg and related felsites, Contrib. Mineral. Petrol., 166, 435 – 449, doi: 10.1007/s00410-013-0884-3.
dc.identifier.citedreferenceMillet, M., J. Baker, and C. Payne ( 2012 ), Ultra‐precise stable Fe isotope measurements by high resolution multi‐collector inductively coupled plasma mass spectrometry with a 57 Fe‐ 58 Fe double spike, Chem. Geol., 304‐305, 18 – 25, doi: 10.1016/j.chemgeo.2012.01.021.
dc.identifier.citedreferenceMolyneux, T. G. ( 1974 ), A geological investigation of the Bushveld Complex in Sekhukhuneland and part of the Steelpoort Valley, Trans. Geol. Soc. S. Afr., 77, 329 – 338.
dc.identifier.citedreferencePoitrasson, F. ( 2006 ), On the iron isotope homogeneity level of the continental crust, Chem. Geol., 235, 195 – 200, doi: 10.1016/j.chemgeo.2006.06.010.
dc.identifier.citedreferencePoitrasson, F., and R. Freydier ( 2005 ), Heavy iron isotope composition of granites determined by high resolution MC‐ICP‐MS, Chem. Geol., 222, 132 – 147, doi: 10.1016/j.chemgeo.2005.07.005.
dc.identifier.citedreferencePolyakov, V. B. and S. D. Mineev ( 2000 ), The use of Mössbauer spectroscopy in stable isotope geochemistry, Geochim. Cosmochim. Acta, 64, 849 – 865.
dc.identifier.citedreferencePolyakov, V. B., R. N. Clayton, J. Horita, and S. D. Mineev ( 2007 ), Equilibrium iron isotope fractionation factors of minerals: Reevaluation from the data of nuclear inelastic resonant X‐ray scattering and Mössbauer spectroscopy, Geochim. Cosmochim. Acta, 71, 3833 – 3846, doi: 10.1016/j.gca.2007.05.019.
dc.identifier.citedreferenceReynolds, I. M. ( 1985 ), The nature and origin of titaniferous magnetite‐rich layers in the upper zone of the Bushveld Complex: A review and synthesis, Econ. Geol., 80, 1089 – 1108.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.