Show simple item record

Ocular pharmacology

dc.contributor.authorNovack, Gary D.
dc.contributor.authorRobin, Alan L.
dc.date.accessioned2017-05-10T17:48:03Z
dc.date.available2017-07-10T14:31:43Zen
dc.date.issued2016-05
dc.identifier.citationNovack, Gary D.; Robin, Alan L. (2016). "Ocular pharmacology." The Journal of Clinical Pharmacology 56(5): 517-527.
dc.identifier.issn0091-2700
dc.identifier.issn1552-4604
dc.identifier.urihttps://hdl.handle.net/2027.42/136697
dc.description.abstractOphthalmic diseases include both those analogous to systemic diseases (eg, inflammation, infection, neuronal degeneration) and not analogous (eg, cataract, myopia). Many anterior segment diseases are treated pharmacologically through eye drops, which have an implied therapeutic index of local therapy. Unlike oral dosage forms administered for systemic diseases, eyedrops require patients not only to adhere to treatment, but to be able to accurately perform—ie, instill drops correctly.Anatomical and physiological barriers make topical delivery to the anterior chamber challenging—in some cases more challenging than absorption through the skin, nasal passages, or gut. Treatment of the posterior segment (eg, vitreous, retina, choroid, and optic nerve) is more challenging due to additional barriers. Recently, intravitreal injections have become a standard of care with biologics for the treatment of macular degeneration and other diseases. Although the eye has esterases, hydroxylases, and transporters, it has relatively little CYP450 enzymes. Because it is challenging to obtain drug concentrations at the target site, ocular clinical pharmacokinetics, and thus pharmacokinetic‐pharmacodynamic interactions, are rarely available. Ophthalmic pharmaceuticals require consideration of solubility, physiological pH, and osmolarity, as well as sterility and stability, which in turn requires optimal pharmaceutics. Although applied locally, ocular medications may be absorbed systemically, which results in morbidity and mortality (eg, systemic hypotension, bronchospasm, and bradycardia).
dc.publisherWiley Periodicals, Inc.
dc.subject.othermacular degeneration
dc.subject.otherophthalmology
dc.subject.otherpharmacology
dc.subject.otherglaucoma
dc.titleOcular pharmacology
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPediatrics
dc.subject.hlbsecondlevelPharmacy and Pharmacology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136697/1/jcph634_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136697/2/jcph634.pdf
dc.identifier.doi10.1002/jcph.634
dc.identifier.sourceThe Journal of Clinical Pharmacology
dc.identifier.citedreferenceFeldman‐Billard S, Dupas B, Sedira N, et al. Hypoglycaemia is associated with the absence of a decrease in diurnal macular thickness in patients with diabetic macular oedema. Diabetes Metab. 2013; 39: 169 – 173.
dc.identifier.citedreferenceNovack GD. Pipeline: decoding the package insert: indications. Ocul Surf. 2003; 1: 150 – 151.
dc.identifier.citedreferenceCannan RK. The Drug Efficacy Study of the National Research Council’s Division of Medical Sciences, 1966‐1969, 1968. Washington, DC: National Academy of Sciences. http://www.nasonline.org/about‐nas/history/archives/collections/des‐1966‐1969‐1.html?referrer=https://www.google.com/.
dc.identifier.citedreferenceJaffe GJ, Ben Nun J, Guo H, Dunn JP, Ashton P. Fluocinolone acetonide sustained drug delivery device to treat severe uveitis. Ophthalmology. 2000; 107: 2024 – 2033.
dc.identifier.citedreferenceLowder C, Belfort R Jr, Lightman S, et al. Dexamethasone intravitreal implant for noninfectious intermediate or posterior uveitis. Arch Ophthalmol. 2011; 129: 545 – 553.
dc.identifier.citedreferenceKeates RH, McGowan KA. Clinical trial of flurbiprofen to maintain pupillary dilation during cataract surgery. Ann Ophthalmol. 1984; 16: 919 – 921.
dc.identifier.citedreferenceFlach AJ, Dolan BJ, Irvine AR. Effectiveness of ketorolac tromethamine 0.5% ophthalmic solution for chronic aphakic and pseudophakic cystoid macular edema. Am J Ophthalmol. 1987; 103: 479 – 486.
dc.identifier.citedreferenceFlach AJ, Stegman RC, Graham J, Kruger LP. Prophylaxis of aphakic cystoid macular edema without corticosteroids. Ophthalmology. 1990; 97: 1253 – 1258.
dc.identifier.citedreferenceLiesegang TJ. Viscoelastics. Int Ophthalmol Clin. 1993; 33: 127 – 147.
dc.identifier.citedreferenceBainbridge JW, Mehat MS, Sundaram V, et al. Long‐term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015; 372: 1887 – 1897.
dc.identifier.citedreferenceBarnard AR, Groppe M, MacLaren RE. Gene therapy for choroideremia using an adeno‐associated viral (AAV) vector. Cold Spring Harb Perspect Med. 2015; 5: a017293.
dc.identifier.citedreferenceHaller JA, Stalmans P, Benz MS, et al. Efficacy of intravitreal ocriplasmin for treatment of vitreomacular adhesion: subgroup analyses from two randomized trials. Ophthalmology. 2015; 122: 117 – 122.
dc.identifier.citedreferenceAREDS. A randomized, placebo‐controlled, clinical trial of high‐dose supplementation with vitamins C and E, beta carotene, and zinc for age‐related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001; 119: 1417 – 1436.
dc.identifier.citedreferenceTAP Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age‐related macular degeneration with verteporfin: one‐year results of 2 randomized clinical trials—TAP report 1. Arch Ophthalmol. 1999; 117: 1329 – 1345.
dc.identifier.citedreferenceBressler SB, Qin H, Melia M, et al. Exploratory analysis of the effect of intravitreal ranibizumab or triamcinolone on worsening of diabetic retinopathy in a randomized clinical trial. JAMA Ophthalmol. 2013; 131: 1033 – 1040.
dc.identifier.citedreferenceScott AB. Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. Ophthalmology. 1980; 87: 1044 – 1049.
dc.identifier.citedreferenceFrueh BR, Felt DP, Wojno TH, Musch DC. Treatment of blepharospasm with botulinum toxin. A preliminary report. Arch Ophthalmol. 1984; 102: 1464 – 1468.
dc.identifier.citedreferenceChia A, Chua WH, Wen L, Fong A, Goon YY, Tan D. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1%, and 0.5%. Am J Ophthalmol. 2014; 157: 451 – 457.
dc.identifier.citedreferenceSiatkowski RM, Cotter SA, Crockett RS, Miller JM, Novack GD, Zadnik K. Two‐year multicenter, randomized, double‐masked, placebo‐controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. J AAPOS. 2008;12:332–339.
dc.identifier.citedreferenceTan DTH, Lam DS, Chua WH, Shu‐Ping DF, Crockett RS, Group APS. One‐year multicenter, double‐masked, placebo‐controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. Ophthalmology. 2005; 112: 84 – 91.
dc.identifier.citedreferenceRepka MX, Kraker RT, Holmes JM, et al. Atropine vs patching for treatment of moderate amblyopia: follow‐up at 15 years of age of a randomized clinical trial. JAMA Ophthalmol. 2014; 132: 799 – 805.
dc.identifier.citedreferenceGoss CM. The Organs of the Senses, 29th ed. Philadelphia: Lea & Febiger, 1973.
dc.identifier.citedreferenceNovack GD. Ophthalmic drug delivery: development and regulatory considerations. Clin Pharmacol Ther. 2009; 85: 539 – 543.
dc.identifier.citedreferenceBlaschke TF, Osterberg L, Vrijens B, Urquhart J. Adherence to medications: insights arising from studies on the unreliable link between prescribed and actual drug dosing histories. Annu Rev Pharmacol Toxicol. 2011; 52: 275 – 301.
dc.identifier.citedreferenceStone JL, Robin AL, Novack GD, Covert D, Cagle GD. An objective evaluation of eye‐drop instillation in glaucoma patients. Arch Ophthalmol. 2009; 127: 732 – 736.
dc.identifier.citedreferenceEdman P. Biopharmaceutics of Ocular Drug Delivery (Pharmacology and Toxicology). Boca Raton, FL: CRC Press; 1993.
dc.identifier.citedreferenceSleath B, Blalock SJ, Carpenter DM, et al. Ophthalmologist‐patient communication, self‐efficacy, and glaucoma medication adherence. Ophthalmology. 2015; 122: 748 – 754.
dc.identifier.citedreferenceBaudouin C, Labbe A, Liang H, Pauly A, Brignole‐Baudouin F. Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res. 2010; 29: 312 – 334.
dc.identifier.citedreferenceBrown RH, Novack GD. General principles of ophthalmic medications. In: Morrison J, Pollack I, eds. Glaucoma: Science and Practice. New York: Thieme Publishing Company, 2002;354–362.
dc.identifier.citedreferenceCovert D, Robin AL, Novack GD. Systemic medications and glaucoma patients (letter). Ophthalmology. 2005; 112: 1849 – 1853.
dc.identifier.citedreferenceZhang T, Xiang CD, Gale D, Carreiro S, Wu EY, Zhang EY. Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: implications for ocular drug disposition. Drug Metab Dispos. 2008; 36: 1300 – 1307.
dc.identifier.citedreferenceKraft ME, Glaeser H, Mandery K, et al. The prostaglandin transporter OATP2A1 is expressed in human ocular tissues and transports the antiglaucoma prostanoid latanoprost. Invest Ophthalmol Vis Sci. 2010; 51: 2504 – 2511.
dc.identifier.citedreferencevan Buskirk EM. Adverse reactions from timolol administration. Ophthalmology. 1980; 87: 447 – 450.
dc.identifier.citedreferenceNordlund JR, Pasquale LR, Robin AL, et al. The cardiovascular, pulmonary, and ocular hypotensive effects of 0.2% brimonidine. Arch Ophthalmol. 1995; 113: 77 – 83.
dc.identifier.citedreferenceStreilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol. 2003; 3: 879 – 889.
dc.identifier.citedreferenceNovack GD. Pipeline: thoughts generated by the Annual Meeting of the American Society of Clinical Pharmacology and Therapeutics. Ocul Surf. 2004; 2: 212 – 214.
dc.identifier.citedreferencePerlee LT, Bansal AT, Gehrs K, et al. Inclusion of genotype with fundus phenotype improves accuracy of predicting choroidal neovascularization and geographic atrophy. Ophthalmology. 2013; 120: 1880 – 1892.
dc.identifier.citedreferenceFauser S, Lambrou GN. Genetic predictive biomarkers of anti‐VEGF treatment response in patients with neovascular age‐related macular degeneration. Surv Ophthalmol. 2015; 60: 138 – 152.
dc.identifier.citedreferenceCiulla TA, Starr MB, Masket S. Bacterial endophthalmitis prophylaxis for cataract surgery: an evidence‐based update. Ophthalmology. 2002; 109: 13 – 24.
dc.identifier.citedreferenceGroup EES. Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors. J Cataract Refract Surg. 2007; 33: 978 – 988.
dc.identifier.citedreferenceShorstein NH, Winthrop KL, Herrinton LJ. Decreased postoperative endophthalmitis rate after institution of intracameral antibiotics in a Northern California eye department. J Cataract Refract Surg. 2013; 39: 8 – 14.
dc.identifier.citedreferencePacker M, Chang DF, Dewey SH, et al. Prevention, diagnosis, and management of acute postoperative bacterial endophthalmitis. J Cataract Refract Surg. 2011; 37: 1699 – 1714.
dc.identifier.citedreferenceBuehler PO, Schein OD, Stamler JF, Verdier DD, Katz J. The increased risk of ulcerative keratitis among disposable soft contact lens users. Arch Ophthalmol. 1992; 110: 1555 – 1558.
dc.identifier.citedreferenceBullock JD, Warwar RE, Elder BL, Northern WI. Temperature instability of ReNu With MoistureLoc: a new theory to explain the worldwide Fusarium keratitis epidemic of 2004‐2006. Arch Ophthalmol. 2008; 126: 1493 – 1498.
dc.identifier.citedreferenceMartin DF, Parks DJ, Mellow SD, et al. Treatment of cytomegalovirus retinitis with an intraocular sustained‐release ganciclovir implant. Arch Ophthalmol. 1994; 112: 1531 – 1539.
dc.identifier.citedreferenceMusch DC, Martin DF, Gordon JF, Davis MD, Kuppermann BD. Treatment of cytomegalovirus retinitis with a sustained‐release ganciclovir implant. The Ganciclovir Implant Study Group. N Engl J Med. 1997; 337: 83 – 90.
dc.identifier.citedreferenceGroup TVS. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS(1). Am J Ophthalmol. 2002; 133: 467 – 474.
dc.identifier.citedreferenceFoulks GN. DEWS report: a mission completed. Ocul Surf. 2007; 5: 65 – 66.
dc.identifier.citedreferenceNichols KK, Foulks GN, Bron AJ, et al. The international workshop on meibomian gland dysfunction: executive summary. Invest Ophthalmol Vis Sci. 2011; 52: 1922 – 1929.
dc.identifier.citedreferenceSmith JA, Albeitz J, Begley C, et al. The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007; 5: 93 – 107.
dc.identifier.citedreferenceSullivan DA, Hammitt KM, Schaumberg DA, et al. Report of the TFOS/ARVO Symposium on Global Treatments for Dry Eye Disease: an unmet need. Ocul Surf. 2012; 10: 108 – 116.
dc.identifier.citedreferencePflugfelder SC, Geerling G, Kinoshita S, et al. Management and therapy of dry eye disease: report of the Management and Therapy Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007; 5: 163 – 178.
dc.identifier.citedreferenceNovack GD. Pipeline: why aren’t there more pharmacotherapies for dry eye? Ocul Surf. 2014; 12: 227 – 230.
dc.identifier.citedreferenceSheppard JD, Torkildsen GL, Lonsdale JD, et al. Lifitegrast ophthalmic solution 5.0% for treatment of dry eye disease: results of the OPUS‐1 phase 3 study. Ophthalmology. 2014; 121: 475 – 483.
dc.identifier.citedreferenceFriedman DS, Wolfs RC, O’Colmain BJ, et al. Prevalence of open‐angle glaucoma among adults in the United States. Arch Ophthalmol. 2004; 122: 532 – 538.
dc.identifier.citedreferenceJiang X, Varma R, Wu S, et al. Baseline risk factors that predict the development of open‐angle glaucoma in a population: the Los Angeles Latino Eye Study. Ophthalmology. 2012; 119: 2245 – 2253.
dc.identifier.citedreferenceHochberg C, Maul E, Chan ES, et al. Association of vision loss in glaucoma and age‐related macular degeneration with IADL disability. Invest Ophthalmol Vis Sci. 2012; 53: 3201 – 3206.
dc.identifier.citedreferenceRamulu P. Glaucoma and disability: which tasks are affected, and at what stage of disease ? Curr Opin Ophthalmol. 2009; 20: 92 – 98.
dc.identifier.citedreferenceKass MA, Heuer DK, Higginbotham EJ, et al. for the Ocular Hypertension Treatment Study Group. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open‐angle glaucoma. Arch Ophthalmol. 2002; 120: 701 – 713.
dc.identifier.citedreferenceHeijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol. 2002; 120: 1268 – 1279.
dc.identifier.citedreferenceGroup GLTR. The Glaucoma Laser Trial (GLT) and Glaucoma Laser Trial follow‐up study: 7. Results. Am J Ophthalmol. 1995; 120: 718 – 731.
dc.identifier.citedreferenceLichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001; 108: 1943 – 1953.
dc.identifier.citedreferencePanel AAO. Preferred Practice Pattern: Primary Open‐Angle Glaucoma. San Francisco, CA: American Academy of Ophthalmology; 2010. http://www.aao.org/preferred‐practice‐pattern/primary‐openangle‐glaucoma‐ppp‐‐october‐2010.
dc.identifier.citedreferencePanel AAO. Preferred Practice Pattern: Primary Open‐Angle Glaucoma Suspect. San Francisco, CA: American Academy of Ophthalmology; 2010. http://www.aao.org/preferred‐practice‐pattern/primary‐openangle‐glaucoma‐suspect‐ppp‐‐october‐20.
dc.identifier.citedreferenceSociety EG. Terminology and Guidelines for Glaucoma, 4th ed. Savona, Italy: PubliComm; 2014.
dc.identifier.citedreferenceSingh K, Sit AJ. Intraocular pressure variability and glaucoma risk: complex and controversial. Arch Ophthalmol. 2011; 129: 1080 – 1081.
dc.identifier.citedreferenceGedde SJ, Schiffman JC, Feuer WJ, Herndon LW, Brandt JD, Budenz DL. Treatment outcomes in the tube versus trabeculectomy (TVT) study after five years of follow‐up. Am J Ophthalmol. 2012; 153: 789 – 803.
dc.identifier.citedreferenceBudenz DL, Barton K, Feuer WJ, et al. Treatment outcomes in the Ahmed Baerveldt Comparison Study after 1 year of follow‐up. Ophthalmology. 2011; 118: 443 – 452.
dc.identifier.citedreferenceRobin AL, Ramakrishnan R, Krishnadas R, et al. A long‐term dose‐response study of mitomycin in glaucoma filtration surgery. Arch Ophthalmol. 1997; 115: 969 – 974.
dc.identifier.citedreferenceGoldmann H. Out‐flow pressure, minute volume and resistance of the anterior chamber flow in man. Doc Ophthalmol Adv Ophthalmol. 1951;5‐6:278–356.
dc.identifier.citedreferenceBrubaker RF. Goldmann’s equation and clinical measures of aqueous dynamics. Exp Eye Res. 2004; 78: 633 – 637.
dc.identifier.citedreferenceBacharach J, Dubiner HB, Levy B, Kopczynski CC, Novack GD, Group A–CS. Double‐masked, randomized, dose‐response study of AR‐13324 vs. latanoprost in patients with elevated intraocular pressure. Ophthalmology. 2015; 122: 302 – 307.
dc.identifier.citedreferenceKiel JW, Kopczynski C. Effect of AR‐13324 on episcleral venous pressure in Dutch belted rabbits. J Ocul Pharmacol Ther. 2015; 31: 146 – 151.
dc.identifier.citedreferenceWang R‐F, Williamson JE, Kopczynski C, Serle JB. Effect of 0.04% AR‐13324, a ROCK and norepinephrine transporter inhibitor, on aqueous humor dynamics in normotensive monkey eyes. J Glaucoma. 2015; 24: 51 – 54.
dc.identifier.citedreferenceWilliams RD, Novack GD, van Haarlem T, Kopczynski C; AR‐12286 Phase 2A Study Group. Ocular hypotensive effect of the Rho kinase inhibitor AR–12286 in patients with glaucoma and ocular hypertension. Am J Ophthalmol. 2011;152:834–841.e1.
dc.identifier.citedreferenceTanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Araie M. Phase 2 randomized clinical study of a rho kinase inhibitor, K‐115, in primary open‐angle glaucoma and ocular hypertension. Am J Ophthalmol. 2013; 156: 731 – 736.
dc.identifier.citedreferenceTanihara H, Inatani M, Honjo M, Tokushige H, Azuma J, Araie M. Intraocular pressure‐lowering effects and safety of topical administration of a selective ROCK inhibitor, SNJ‐1656, in healthy volunteers. Arch Ophthalmol. 2008; 126: 309 – 315.
dc.identifier.citedreferenceToris CB, Camras CB, Yablonski ME. Effects of PhXA41, a new prostaglandin F2 alpha analog, on aqueous humor dynamics in human eyes. Ophthalmology. 1993; 100: 1297 – 1304.
dc.identifier.citedreferenceWeinreb RN, Toris CB, Gabelt BT, Lindsey JD, Kaufman PL. Effects of prostaglandins on the aqueous humor outflow pathways. Surv Ophthalmol. 2002;47 Suppl 1:S53–S64.
dc.identifier.citedreferenceSchenker HW, Yablonski ME, Podos SM, et al. Fluorophotometric study of epinephrine and timolol in human subjects. Arch Ophthalmol. 1981; 99: 1212 – 1226.
dc.identifier.citedreferenceCoakes RL, Brubaker RF. The mechanism of timolol in lowering intraocular pressure. Arch Ophthalmol. 1978; 96: 2045 – 2048.
dc.identifier.citedreferenceStrahlman E, Tipping R, Vogel R. A double‐masked, randomized 1‐year study comparing dorzolamide (Trusopt), timolol, and betaxolol. International Dorzolamide Study Group. Arch Ophthalmol. 1995; 113: 1009 – 1016.
dc.identifier.citedreferenceAdamsons I, Clineschmidt C, Polis A, et al. The efficacy and safety of dorzolamide as adjunctive therapy to timolol maleate gellan solution in patients with elevated intraocular pressure. J Glaucoma. 1998; 7: 253 – 260.
dc.identifier.citedreferenceLichter PR, Newman LP, Wheeler NC, Beall OV. Patient tolerance to carbonic anhydrase inhibitors. Am J Ophthalmol. 1978; 85: 495 – 502.
dc.identifier.citedreferenceGharagozloo NZ, Relf SJ, Brubaker RF. Aqueous flow is reduced by the alpha‐adrenergic agonist, apraclonidine hydrochloride (ALO 2145). Ophthalmology. 1988; 95: 1217 – 1220.
dc.identifier.citedreferenceRobin AL. The role of apraclonidine hydrochloride in laser therapy for glaucoma. Trans Am Ophthalmol Soc. 1989; 87: 729 – 761.
dc.identifier.citedreferenceToris CB, Gleason ML, Camras CB, Yablonski ME. Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol. 1995; 113: 1514 – 1517.
dc.identifier.citedreferenceNovack GD. Medicinal cannabis for glaucoma. Curr Opin Ophthalmol. in press.
dc.identifier.citedreferenceRobin AL, Novack GD, Covert DW, Crockett RS, Marcic TS. Adherence in glaucoma: objective measurements of once‐daily and adjunctive medication use. Am J Ophthalmol. 2007; 144: 533 – 540.
dc.identifier.citedreferenceNovack GD. Pipeline: what does it mean when a company says that a product is “approvable”? Ocul Surf. 2005; 3: 63 – 64.
dc.identifier.citedreferenceJesner S. Der humor aqueus des Auges in seinen beziehungen zu blutdruck und nerventreizung. Pflugers Arch Eur J Physiol. 1880 23: 14 – 44.
dc.identifier.citedreferenceYablonski ME, Burde RM, Kolker AE, Becker B. Cataracts induced by topical dexamathasone in diabetics. Arch Ophthalmol. 1978; 96: 474 – 476.
dc.identifier.citedreferenceFairbairn WD, Thorson JC. Fluorometholone: anti‐inflammatory and intraocular pressure effects. Arch Ophthalmol. 1971; 86: 138 – 141.
dc.identifier.citedreferenceBodor N. Soft drugs: principles and methods for the design of safe drugs. Med Res Rev. 1984; 4: 449 – 469.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.