Show simple item record

Mercury in tunas and blue marlin in the North Pacific Ocean

dc.contributor.authorDrevnick, Paul E.
dc.contributor.authorBrooks, Barbara A.
dc.date.accessioned2017-05-10T17:48:04Z
dc.date.available2018-07-09T17:42:24Zen
dc.date.issued2017-05
dc.identifier.citationDrevnick, Paul E.; Brooks, Barbara A. (2017). "Mercury in tunas and blue marlin in the North Pacific Ocean." Environmental Toxicology and Chemistry 36(5): 1365-1374.
dc.identifier.issn0730-7268
dc.identifier.issn1552-8618
dc.identifier.urihttps://hdl.handle.net/2027.42/136698
dc.description.abstractModels and data from the North Pacific Ocean indicate that mercury concentrations in water and biota are increasing in response to (global or hemispheric) anthropogenic mercury releases. In the present study, we provide an updated record of mercury in yellowfin tuna (Thunnus albacares) caught near Hawaii that confirms an earlier conclusion that mercury concentrations in these fish are increasing at a rate similar to that observed in waters shallower than 1000 m. We also compiled and reanalyzed data from bigeye tuna (Thunnus obesus) and blue marlin (Makaira nigricans) caught near Hawaii in the 1970s and 2000s. Increases in mercury concentrations in bigeye tuna are consistent with the trend found in yellowfin tuna, in both timing and magnitude. The data available for blue marlin do not allow for a fair comparison among years, because mercury concentrations differ between sexes for this species, and sex was identified (or reported) in only 3 of 7 studies. Also, mercury concentrations in blue marlin may be insensitive to modest changes in mercury exposure, because this species appears to have the ability to detoxify mercury. The North Pacific Ocean is a region of both relatively high rates of atmospheric mercury deposition and capture fisheries production. Other data sets that allow temporal comparisons in mercury concentrations, such as pacific cod (Gadus macrocephalus) in Alaskan waters and albacore tuna (Thunnus alalunga) off the US Pacific coast, should be explored further, to aid in understanding human health and ecological risks and to develop additional baseline knowledge for assessing changes in a region expected to respond strongly to reductions in anthropogenic mercury emissions. Environ Toxicol Chem 2017;36:1365–1374. © 2017 SETAC
dc.publisherThe Pew Charitable Trusts
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBioaccumulation
dc.subject.otherFish
dc.subject.otherOcean
dc.subject.otherMethylmercury
dc.subject.otherMercury
dc.titleMercury in tunas and blue marlin in the North Pacific Ocean
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136698/1/etc3757_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136698/2/etc3757.pdf
dc.identifier.doi10.1002/etc.3757
dc.identifier.sourceEnvironmental Toxicology and Chemistry
dc.identifier.citedreferenceRooker JR, Wells RJD, Itano DG, Thorrold SR, Lee JM. 2016. Natal origin and population connectivity of bigeye and yellowfin tuna in the Pacific Ocean. Fish Oceanogr 25: 277 – 291.
dc.identifier.citedreferenceMunson KM, Lamborg CH, Swarr GJ, Saito MA. 2015. Mercury species concentrations and fluxes in the central Tropical Pacific Ocean. Global Biogeochem Cycles 29: 656 – 676.
dc.identifier.citedreferenceMadenjian CP, Rediske RR, Krabbenhoft DP, Stapanian MA, Chernyak SM, O’Keefe JP. 2016. Sex differences in contaminant concentrations in fish: A synthesis. Biol Sex Differ 7: 42.
dc.identifier.citedreferenceUnderwood AJ. 1997. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University, Cambridge, UK.
dc.identifier.citedreferenceUS Food and Drug Administration. 2017. Mercury levels in commercial fish and shellfish (1990‐2012). [cited 2017 February 01]. Available from: http://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm115644.htm
dc.identifier.citedreferenceUS Environmental Protection Agency. 2017. Choose fish and shellfish wisely: What you need to know about mercury in fish and shellfish. [cited 2017 February 01]. Available from: http://www.epa.gov/choose‐fish‐and‐shellfish‐wisely/what‐you‐need‐to‐know‐about‐mercury‐fish‐and‐shellfish
dc.identifier.citedreferenceSandheinrich MB, Wiener JG. 2011. Methylmercury in freshwater fish: Recent advances in assessing toxicity of environmentally relevant exposures. In Beyer WN, Meador JP, eds, Environmental Contaminants in Biota: Interpreting Tissue Concentrations, 2nd ed. CRC, Boca Raton, FL, USA, pp 169 – 192.
dc.identifier.citedreferenceBarghigiani C, Pellegrini D, Carpene E. 1989. Mercury binding proteins in liver and muscle of flat fish from the northern Tyrrhenian Sea. Comp Biochem Physiol 94C: 309 – 312.
dc.identifier.citedreferenceBebianno MJ, Santos C, Canário J, Gouveia N, Sena‐Carvalho D, Vale C. 2007. Hg and metallothionein‐like proteins in the black scabbardfish Aphanopus carbo. Food Chem Toxicol 45: 1443 – 1452.
dc.identifier.citedreferenceOnsanit S, Wang W‐X. 2011. Sequestration of total and methyl mercury in different subcellular pools in marine caged fish. J Hazard Mater 198: 113 – 122.
dc.identifier.citedreferenceBarst BD, Rosabal M, Campbell PGC, Muir DGC, Wang X, Köck G, Drevnick PE. 2016. Subcellular distribution of trace elements and liver histology of landlocked Arctic char ( Salvelinus alpinus ) sampled along a mercury contamination gradient. Environ Pollut 212: 574 – 583.
dc.identifier.citedreferenceKidd K, Batchelar K. 2012. Mercury. In Wood CM, Farrell AP, Brauner CJ, eds, Fish Physiology, Vol 31B, Homeostasis and Toxicology of Non‐Essential Metals. Elsevier, London, UK, pp 237 – 295.
dc.identifier.citedreferenceBonito LT, Hamdoun A, Sandin SA. 2016. Evaluation of the global impacts of mitigation on persistent, bioaccumulative and toxic pollutants in marine fish. PeerJ 4: e1573.
dc.identifier.citedreferenceDavis JA, Ross JRM, Bezalel S, Sim L, Bonnema A, Ichikawa G, Heim WA, Schiff K, Eagles‐Smith CA, Ackerman JT. 2016. Hg concentrations in fish from coastal waters of California and Western North America. Sci Total Environ 568: 1146 – 1156.
dc.identifier.citedreferenceSato RL, Li GG, Shaha S. 2006. Antepartum seafood consumption and mercury levels in newborn cord blood. Am J Obstet Gynecol 194: 1683 – 1688.
dc.identifier.citedreferenceSoon R, Dye TD, Ralston NV, Berry MJ, Sauvage LM. 2014. Seafood consumption and umbilical cord blood mercury concentrations in a multiethnic maternal and child health cohort. BMC Pregnancy Childbirth 14: 209.
dc.identifier.citedreferenceHall AS, Teeny FM, Lewid LG, Hardman WH, Gauglitz, Jr., EJ. 1976. Mercury in fish and shellfish of the Northeast Pacific. I. Pacific halibut, Hippoglossus stenolepsis. Fish Bull 74: 783 – 789.
dc.identifier.citedreferenceGerlach R, Teas H. 2014. Environmental contaminants: Alaska fish monitoring program. In Proceedings, 16th Annual Alaska Forum on the Environment, Anchorage, Alaska, USA, February 3–7, 2014.
dc.identifier.citedreferenceMorrissey MT, Rasmussen R, Okado T. 2004. Mercury content in Pacific troll‐caught albacore tuna ( Thunnus alalunga ). J Aquat Food Prod Technol 13: 41 – 52.
dc.identifier.citedreferenceMorrissey MT, Geise LA. 2006. Mercury content in Pacific albacore tuna ( Thunnus alalunga ) during 2006 season. Oregon State University Seafood Laboratory, Astoria, OR, USA.
dc.identifier.citedreferenceInternational Pacific Halibut Commission staff, Gustafson K. 2015. Annual Report 2014. International Pacific Halibut Commission, Seattle, WA, USA.
dc.identifier.citedreferenceHealthLinkBC. 2016. Food safety: Mercury in fish. Nutrition Series 68m. British Columbia Ministry of Health, Victoria, BC, Canada.
dc.identifier.citedreferenceVo A‐TE, Bank MS, Shine JP, Edwards SV. 2011. Temporal increase in organic mercury in an endangered pelagic seabird assessed by century‐old museum specimens. Proc Natl Acad Sci U S A 108: 7466 – 7471.
dc.identifier.citedreferenceDietz R, Riget FF, Boertmann D, Sonne C, Olsen MT, Fjeldså J, Falk K, Kirkegaard M, Egevang C, Asmund G, Wille F, Møller S. 2006. Time trends of mercury in feathers of West Greenland birds of prey during 1851‐2003. Environ Sci Technol 40: 5911 – 5916.
dc.identifier.citedreferenceLamborg CH, Hammerschmidt CR, Bowman KL, Swarr GJ, Munson KM, Ohnemus DC, Lam PJ, Heimbürger L‐E, Rijkenberg MJA, Saito MA. 2014. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512: 65 – 68.
dc.identifier.citedreferenceDe Simone F, Gencarelli CN, Hedgecock IM, Pirrone N. 2016. A modeling comparison of mercury deposition from current anthropogenic mercury emission inventories. Environ Sci Technol 50: 5154 – 5162.
dc.identifier.citedreferenceSunderland EM, Krabbenhoft DP, Moreau JW, Strode SA, Landing WM. 2009. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochem Cycles 23: GB2010.
dc.identifier.citedreferenceSoerensen AL, Jacob DJ, Streets DG, Witt MLI, Ebinghaus R, Mason RP, Andersson M, Sunderland EM. 2012. Multi‐decadal decline of mercury in the North Atlantic atmosphere explained by changing subsurface seawater concentrations. Geophys Res Lett 39: L21810.
dc.identifier.citedreferenceZhang Y, Jacob DJ, Horowitz HM, Chen L, Amos HM, Krabbenhoft DP, Slemr F, St. Louis VL, Sunderland EM. 2016. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proc Natl Acad Sci USA 113: 526 – 531.
dc.identifier.citedreferenceFisher JA, Jacob DJ, Soerensen AL, Amos HM, Steffen A, Sunderland EM. 2012. Riverine source of Arctic Ocean mercury inferred from atmospheric observations. Nat Geosci 5: 499 – 504.
dc.identifier.citedreferenceSoerensen AL, Jacob DJ, Schartup AT, Fisher JA, Lehnherr I, St. Louis VL, Heimbürger L‐E, Sonke JE, Krabbenhoft DP, Sunderland EM. 2016. A mass budget for mercury and methylmercury in the Arctic Ocean. Global Biogeochem Cycles 30: 560 – 575.
dc.identifier.citedreferenceCossa D, Averty B, Pirrone N. 2009. The origin of methylmercury in open Mediterranean waters. Limnol Oceanogr 54: 837 – 844.
dc.identifier.citedreferenceLehnherr I, St. Louis VL, Hintelmann H, Kirk J. 2011. Methylation of inorganic mercury in polar marine waters. Nat Geosci 4: 298 – 302.
dc.identifier.citedreferenceMunson KM. 2014. Transformations of mercury in the marine water column. PhD theis. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Cambridge, MA, USA.
dc.identifier.citedreferenceBlum JD, Popp BN, Drazen JC, Choy CA, Johnson MW. 2013. Methylmercury production below the mixed layer in the North Pacific Ocean. Nat Geosci 6: 879 – 884.
dc.identifier.citedreferenceBergquist BA, Blum JD. 2007. Mass‐dependent and ‐independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318: 417 – 420.
dc.identifier.citedreferenceMasbou J, Point D, Guillou G, Sonke JE, Lebreton B, Richard. 2015. Carbon stable isotope analysis of methylmercury toxin in biological materials by gas chromatography isotope ratio mass spectrometry. Anal Chem 87: 11732 – 11738.
dc.identifier.citedreferenceCross FA, Evans DW, Barber RT. 2015. Decadal declines of mercury in adult bluefish (1972‐2011) from the Mid‐Atlantic coast of the U.S.A. Environ Sci Technol 49: 9064 – 9072.
dc.identifier.citedreferenceLee C‐S, Lutcavage ME, Chandler E, Madigan DJ, Cerrato RM, Fisher NS. 2016. Declining mercury concentrations in bluefin tuna reflect reduced emissions to the North Atlantic Ocean. Environ Sci Technol 50: 12825 – 12830.
dc.identifier.citedreferenceMurray MS, McRoy CP, Duffy LK, Hirons AC, Schaal JM, Trocine RP, Trefry J. 2015. Biogeochemical analysis of ancient Pacific cod bone suggests Hg bioaccumulation was linked to paleo sea level rise and climate change. Front Environ Sci 3: 1 – 8.
dc.identifier.citedreferenceJaffe DA, Prestbo E, Swartzendruber P, Weiss‐Penzias P, Kato S, Takami A, Hatakeyama S, Kajii Y. 2005. Export of atmospheric mercury from Asia. Atmos Environ 39: 3029 – 3038.
dc.identifier.citedreferenceDrevnick PE, Lamborg CH, Horgan MJ. 2015. Increase in mercury in Pacific yellowfin tuna. Environ Toxicol Chem 34: 931 – 934.
dc.identifier.citedreferenceDietz R, Riget F, Born EW, Sonne C, Grandjean P, Kirkegaard M, Olsen MT, Asmund G, Renzoni A, Baagøe H, Andreasen C. 2006. Trends in mercury in hair of Greenlandic polar bears ( Ursus maritimus ) during 1892‐2001. Environ Sci Technol 40: 1120 – 1125.
dc.identifier.citedreferenceDietz R, Outridge PM, Hobson KA. 2009. Anthropogenic contributions to mercury levels in present‐day Arctic animals–A review. Sci Total Environ 407: 6120 – 6131.
dc.identifier.citedreferenceDietz R, Born EW, Rigét F, Aubail A, Sonne C, Drimmie R, Basu N. 2011. Temporal trends and future predictions of mercury concentrations in Northwest Greenland polar bear ( Ursus maritimus ) hair. Environ Sci Technol 45: 1458 – 1465.
dc.identifier.citedreferenceBond AL, Hobson KA, Branfireun BA. 2015. Rapidly increasing methyl mercury in endangered ivory gull ( Pagophila eburnea ) feathers over a 130 year record. Proc R Soc B 282: 20150032.
dc.identifier.citedreferenceUnited Nations Environment Programme. 2013. Minamata Convention on Mercury. [cited 2017 February 01]. Available from: http://www.mercuryconvention.org/Portals/11/documents/Booklets/Minamata Convention on Mercury_booklet_English.pdf
dc.identifier.citedreferenceInternational Seafood Sustainability Foundation. 2016. ISSF tuna stock status update, 2016: Status of the world fisheries for tuna. ISSF Technical Report 2016‐05. International Seafood Sustainability Foundation, Washington, DC.
dc.identifier.citedreferenceGalland G, Rogers A, Nickson A. 2016. Netting Billions: A Global Valuation of Tuna. The Pew Charitable Trusts, Philadelphia, PA, USA.
dc.identifier.citedreferenceSunderland EM. 2007. Mercury exposure from domestic and imported estuarine and marine fish in the U.S. seafood market. Environ Health Perspect 115: 235 – 242.
dc.identifier.citedreferenceKarimi R, Fitzgerald TP, Fisher NS. 2012. A quantitative synthesis of mercury in commercial seafood and implications for exposure in the United States. Environ Health Perspect 120: 1512 – 1519.
dc.identifier.citedreferenceBillfish Working Group. 2013. Stock assessment of blue marlin in the Pacific Ocean in 2013. Annex 13 of ISC13 Plenary Report. International Scientific Committee for Tuna and Tuna‐like Species in the North Pacific Ocean, Busan, Republic of Korea.
dc.identifier.citedreferenceRivers JB, Pearson JE, Shultz CD. 1972. Total and organic mercury in marine fish. Bull Environ Contam Toxicol 8: 257 – 266.
dc.identifier.citedreferenceThieleke JR. 1973. Mercury levels in five species of commercially important pelagic fish taken from the Pacific Ocean near Hawaii. MS thesis. University of Wisconsin‐Madison, WI, USA.
dc.identifier.citedreferenceKraepiel AML, Keller K, Chin HB, Malcolm EG, Morel FMM. 2003. Sources and variations of mercury in tuna. Environ Sci Technol 37: 5551 – 5558.
dc.identifier.citedreferenceBrooks B. 2004. Mercury levels in tuna and other major commercial fish species in Hawaii. Proceedings, 2004 National Forum on Contaminants in Fish, San Diego, CA, USA, January 25–28, 2004, p 24.
dc.identifier.citedreferenceKaneko JJ, Ralston NVC. 2007. Selenium and mercury in pelagic fish in the central North Pacific near Hawaii. Biol Trace Elem Res 119: 242 – 254.
dc.identifier.citedreferenceChoy CA, Popp BN, Kaneko JJ, Drazen JC. 2009. The influence of depth on mercury levels in pelagic fishes and their prey. Proc Natl Acad Sci U S A 106: 13865 – 13869.
dc.identifier.citedreferenceBosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC. 2016. Mercury accumulation in yellowfin tuna ( Thunnus albacares ) with regards to muscle type, muscle position and fish size. Food Chem 190: 351 – 356.
dc.identifier.citedreferenceSchultz CD, Crear D, Pearson JE, Rivers JB, Hylin JW. 1976. Total and organic mercury in the Pacific blue marlin. Bull Environ Contam Toxicol 15: 230 – 234.
dc.identifier.citedreferenceSchultz CD, Crear D. 1976. The distribution of total and organic mercury in seven tissues of the Pacific blue marlin, Makaira nigricans. Pacific Sci 30: 101 – 107
dc.identifier.citedreferenceUnninayar CS, Ito BM. 1975. Mercury in the Pacific blue marlin, Makaira nigricans. Southwest Fisheries Center Administrative Report 2H. Southwest Fisheries Center, National Marine Fisheries Service, NOAA, Honolulu, HI, USA.
dc.identifier.citedreferenceAdams DH. 2004. Total mercury levels in tunas from offshore waters of the Florida Atlantic coast. Mar Pollut Bull 49: 659 – 667.
dc.identifier.citedreferenceChen C‐Y, Lai C‐C, Chen K‐S, Hsu C‐C, Hung C‐C, Chen M‐H. 2014. Total and organic mercury concentrations in the muscles of Pacific albacore ( Thunnus alalunga ) and bigeye tuna ( Thunnus obesus ). Mar Pollut Bull 85: 606 – 612.
dc.identifier.citedreferenceWilson CA, Dean JM, Prince ED, Lee DW. 1991. An examination of sexual dimorphism in Atlantic and Pacific blue marlin using body weight, sagittae weight, and age estimates. J Exp Mar Biol Ecol 151: 209 – 225.
dc.identifier.citedreferenceIto R. 2005. Review of product form conversion ratios for the Hawaii billfish catch. PIFCS Working Paper ISC/05/MAR&SWO‐WGs/3. Pacific Islands Fisheries Science Center, National Marine Fisheries Service, NOAA, Honolulu, HI, USA.
dc.identifier.citedreferenceLangley A, Okamoto H, Williams P, Miyabe N, Bigelow K. 2006. A summary of data available for the estimation of conversion factors (processed to whole fish weights) for yellowfin and bigeye tuna. WCPFC‐SC2‐2006/ME IP‐3. Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia.
dc.identifier.citedreferenceIto RY. 2013. U.S. commercial fisheries for marlins in the North Pacific Ocean. PIFCS Working Paper WP‐13‐001. Pacific Islands Fisheries Science Center, NOAA Fisheries Service, Honolulu, HI, USA.
dc.identifier.citedreferenceChoy CA. 2013. Pelagic food web connectivity in the North Pacific subtropical gyre: A combined perspective from multiple biochemical tracers and diet. PhD thesis. University of Hawai’i at Manoa, HI, USA.
dc.identifier.citedreferenceLavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM. 2013. Biomagnification of mercury in aquatic food webs: A worldwide meta‐analysis. Environ Sci Technol 47: 13385 – 13394.
dc.identifier.citedreferenceBloom NS. 1992. On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49: 1010 – 1017.
dc.identifier.citedreferenceUS Food and Drug Administration. 2000. Guidance for industry: Action levels for poisonous or deleterious substances in human food and animal feed. [cited 2017 February 01]. Available from: http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ucm077969.htm
dc.identifier.citedreferenceUS Environmental Protection Agency. 2001. Water quality criterion for the protection of human health: Methylmercury. EPA 823/F‐01/001. Washington, DC.
dc.identifier.citedreferenceHammerschmidt CR, Bowman KL. 2012. Vertical methylmercury distribution in the subtropical North Pacific Ocean. Mar Chem 132–133: 77 – 82.
dc.identifier.citedreferenceDrevnick PE, Cooke CA, Barraza D, Blais JM, Coale KH, Cumming BF, Curtis CJ, Das B, Donahue WF, Eagles‐Smith CA, Engstrom DR, Fitzgerald WF, Furl CV, Gray JE, Hall RI, Jackson TA, Laird KR, Lockhart WL, Macdonald RW, Mast MA, Mathieu C, Muir DCG, Outridge PM, Reinemann SA, Rothenberg SE, Ruiz‐Fernández AC, St. Louis VL, Sanders RD, Sanei H, Skierszkan EK, Van Metre PC, Veverica TJ, Wiklund JA, Wolfe B. 2016. Spatiotemporal patterns of mercury accumulation in lake sediments of western North America. Sci Total Environ 568: 1157 – 1170.
dc.identifier.citedreferenceLaurier F, Mason RP, Gill G, Whalin L. 2004. Mercury distribution in the North Pacific Ocean: 20 years of observations. Mar Chem 90: 319.
dc.identifier.citedreferenceKwon SY, Blum JD, Madigan DJ, Block BA, Popp BN. 2016. Quantifying mercury isotope dynamics in captive Pacific bluefin tuna ( Thunnus orientalis ). Elementa 4: 000088.
dc.identifier.citedreferenceKorsmeyer KE, Dewar H. 2001. Tuna metabolism and energetics. In Block BA, Stevens ED, eds, Tuna: Physiology, Ecology, and Evolution. Academic, San Diego, CA, USA, pp 35 – 78.
dc.identifier.citedreferenceBushnell PG, Brill RW, Bourke RE. 1990. Cardiorespiratory responses of skipjack tuna ( Katsuwonus pelamis ), yellowfin tuna ( Thunnus albacares ), and bigeye tuna ( Thunnus obesus ) to acute reductions of ambient oxygen. Can J Zool 68: 1857 – 1865.
dc.identifier.citedreferenceGraham JB, Dickson KA. 2004. Tuna comparative physiology. J Exp Biol 207: 4015 – 4024.
dc.identifier.citedreferenceItano DG, Holland KN. 2000. Movement and vulnerability of bigeye ( Thunnus obesus ) and yellowfin tuna ( Thunnus albacares ) in relation to FADs and natural aggregation points. Aquat Living Resour 13: 213 − 223.
dc.identifier.citedreferenceSibert JR, Musyl MK, Brill RW. 2003. Horizontal movements of bigeye tuna ( Thunnus obesus ) near Hawaii determined by Kalman filter analysis of archival tagging data. Fish Oceanogr 12: 141 – 151.
dc.identifier.citedreferenceGraham BS. 2008. Trophic dynamics and movements of tuna in the tropical Pacific Ocean inferred from stable isotope analyses. PhD thesis. University of Hawai’i at Manoa, HI, USA.
dc.identifier.citedreferenceHyder P, Bigelow K, Brainard R, Seki M, Firing J, Flament P. 2009. Migration and abundance of bigeye tuna ( Thunnus obesus ), and other pelagic species, inferred from catch rates and their relation to variations in the ocean environment. SOEST 09‐02, JIMAR Contribution 09‐371. School of Ocean and Earth Science and Technology, University of Hawai’i at Manoa, HI, USA.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.