Show simple item record

Substorm occurrence rates, substorm recurrence times, and solar wind structure

dc.contributor.authorBorovsky, Joseph E.
dc.contributor.authorYakymenko, Kateryna
dc.date.accessioned2017-05-10T17:48:08Z
dc.date.available2018-05-04T20:56:59Zen
dc.date.issued2017-03
dc.identifier.citationBorovsky, Joseph E.; Yakymenko, Kateryna (2017). "Substorm occurrence rates, substorm recurrence times, and solar wind structure." Journal of Geophysical Research: Space Physics 122(3): 2973-2998.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/136700
dc.description.abstractTwo collections of substorms are created: 28,464 substorms identified with jumps in the SuperMAG AL index in the years 1979–2015 and 16,025 substorms identified with electron injections into geosynchronous orbit in the years 1989–2007. Substorm occurrence rates and substorm recurrence‐time distributions are examined as functions of the phase of the solar cycle, the season of the year, the Russell‐McPherron favorability, the type of solar wind plasma at Earth, the geomagnetic‐activity level, and as functions of various solar and solar wind properties. Three populations of substorm occurrences are seen: (1) quasiperiodically occurring substorms with recurrence times (waiting times) of 2–4 h, (2) randomly occurring substorms with recurrence times of about 6–15 h, and (3) long intervals wherein no substorms occur. A working model is suggested wherein (1) the period of periodic substorms is set by the magnetosphere with variations in the actual recurrence times caused by the need for a solar wind driving interval to occur, (2) the mesoscale structure of the solar wind magnetic field triggers the occurrence of the random substorms, and (3) the large‐scale structure of the solar wind plasma is responsible for the long intervals wherein no substorms occur. Statistically, the recurrence period of periodically occurring substorms is slightly shorter when the ram pressure of the solar wind is high, when the magnetic field strength of the solar wind is strong, when the Mach number of the solar wind is low, and when the polar‐cap potential saturation parameter is high.Key PointsSubstorm occurrence rates and substorm recurrence times are studied and compared with the properties of the time‐varying solar wind at EarthThe mesoscale structure of the solar wind magnetic field plays a role in the occurrence statistics of substormsThe period of periodic substorms may be a combination of an intrinsic magnetospheric period plus variations of the solar wind magnetic field
dc.publisherWiley Periodicals, Inc.
dc.publisherAGU
dc.subject.othersubstorms
dc.subject.othersolar wind structure
dc.subject.otherperiodic substorms
dc.subject.otherrandom substorms
dc.subject.otherheliospheric magnetic field
dc.titleSubstorm occurrence rates, substorm recurrence times, and solar wind structure
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136700/1/jgra53356.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136700/2/jgra53356_am.pdf
dc.identifier.doi10.1002/2016JA023625
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferencePrichard, D., J. E. Borovsky, P. M. Lemons, and C. P. Price ( 1996 ), Time dependence of substorm recurrence: An information‐theoretic analysis, J. Geophys. Res., 101, 15,359 – 15,369, doi: 10.1029/95JA03419.
dc.identifier.citedreferenceSmith, C. W., N. A. Schwadron, and C. E. DeForest ( 2013 ), Decline and recovery of the interplanetary magnetic field during the protracted solar minimum, Astrophys. J., 775, 59, doi: 10.1088/0004-637X/775/1/59.
dc.identifier.citedreferenceSouthwood, D. J. ( 1976 ), A general approach to low‐frequency instability in the ring current plasma, J. Geophys. Res., 81, 3340 – 3348, doi: 10.1029/JA081i019p03340.
dc.identifier.citedreferenceSpiro, R. W., M. Harel, R. A. Wolf, and P. H. Reiff ( 1981 ), Quantitative simulation of a magnetospheric substorm 3. Plasmaspheric electric fields and evolution of the plasmapause, J. Geophys. Res., 86, 2261 – 2272.
dc.identifier.citedreferenceSpreiter, J. R., A. L. Summers, and A. Y. Alksne ( 1966 ), Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 14, 223, doi: 10.1016/0032-0633(66)90124-3.
dc.identifier.citedreferenceSreenivasan, K. R., A. Prabhu, and R. Narasimha ( 1983 ), Zero‐crossings in turbulent signals, J. Fluid Mech., 137, 251, doi: 10.1017/S0022112083002396.
dc.identifier.citedreferenceTanskanen, E., T. I. Pulkkinen, H. E. J. Koskinen, and J. A. Slavin ( 2002 ), Substorm energy budget during low and high solar activity: 1997 and 1999 compared, J. Geophys. Res., 107 ( A6 ), 1086, doi: 10.1029/2001JA900153.
dc.identifier.citedreferenceTanskanen, E. I. ( 2009 ), A comprehensive high‐throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined, J. Geophys. Res., 114, A05204, doi: 10.1029/2008JA013682.
dc.identifier.citedreferenceTanskanen, E. I., J. A. Slavin, A. J. Tanskanen, A. Viljanen, T. I. Pulkkinen, H. E. J. Koskinen, A. Pulkkinen, and J. Eastwood ( 2005 ), Magnetospheric substorms are strongly modulated by interplanetary high‐speed streams, Geophys. Res. Lett., 32, L16104, doi: 10.1029/2005GL023318.
dc.identifier.citedreferenceTanskanen, E. I., T. I. Pulkkinen, A. Viljanen, K. Mursula, N. Partamies, and J. A. Slavin ( 2011 ), From space weather toward space climate time scales: Substorm analysis from 1993 to 2008, J. Geophys. Res., 116, A00I34, doi: 10.1029/2010JA015788.
dc.identifier.citedreferenceThomsen, M. F. ( 2004 ), Why Kp is such a good measure of magnetospheric convection, Space Weather, 2, S11044, doi: 10.1029/2004SW000089.
dc.identifier.citedreferenceWalker, R. J., and C. T. Russell ( 1995 ), Solar‐wind interactions with magnetized planets, in Introduction to Space Physics, edited by M. G. Kivelson and C. T. Russell, 164 pp., Cambridge Univ. Press, New York.
dc.identifier.citedreferenceWelling, D. T., et al. ( 2015 ), The Earth: Plasma sources, losses, and transport processes, Space Sci. Rev., 192, 145, doi: 10.1007/s11214-015-0187-2.
dc.identifier.citedreferenceWeygand, J. M., R. L. McPherron, K. Kauristie, H. U. Frey, and T.‐S. Hsu ( 2008 ), Relation of auroral substorm onset to local AL index and dispersionless particle injections, J. Atmos. Sol. Terr. Phys., 70, 2336, doi: 10.1016/j.jastp.2008.09.030.
dc.identifier.citedreferenceWild, J. A., E. E. Woodfield, and S. K. Morley ( 2009 ), On the triggering of auroral substorms by northward turnings of the interplanetary magnetic field, Ann. Geophys., 27, 3559, doi: 10.5194/angeo-27-3559-2009.
dc.identifier.citedreferenceXu, F., and J. E. Borovsky ( 2015 ), A new 4‐plasma categorization scheme for the solar wind, J. Geophys. Res. Space Physics, 120, 70 – 100, doi: 10.1002/2014JA020412.
dc.identifier.citedreferenceYakymenko, K., and J. E. Borovsky ( 2016 ), Substorm occurrence rates as determined by various data sets, in 2016 Los Alamos Space Weather Summer School Research Reports, p. 63, Report LA‐UR‐16‐29471, Los Alamos Natl. Lab., Los Alamos, N. M.
dc.identifier.citedreferenceYau, A. W., W. K. Peterson, and T. Abe ( 2011 ), Influences of the ionosphere, thermosphere and magnetosphere on ion outflows, in The Dynamic Magnetosphere, edited by W. Liu and M. Fujimoto, p. 283, Springer Science+Business Media.
dc.identifier.citedreferenceYeoman, T. K., M. P. Freeman, G. D. Reeves, M. Lester, and D. Orr ( 1994 ), A comparison of midlatitude Pi 2 pulsations and geostationary orbit particle injections as substorm indicators, J. Geophys. Res., 99, 4085 – 4093, doi: 10.1029/93JA03233.
dc.identifier.citedreferenceYlvisaker, N. D. ( 1965 ), The expected number of zeros of a stationary Gaussian process, Ann. Math. Stat., 36, 1043 – 1046, doi: 10.1214/aoms/1177700077.
dc.identifier.citedreferenceZerbo, J.‐L., and J. D. Richardson ( 2015 ), The solar wind during current and past solar minima and maxima, J. Geophys. Res. Space Physics, 120, 10,250 – 10,256, doi: 10.1002/2015JA021407.
dc.identifier.citedreferenceZolotukhina, N. A., P. N. Mager, and D. Y. Klimushkin ( 2008 ), Pc5 waves generated by substorm injection: A case study, Ann. Geophys., 26, 2053, doi: 10.5194/angeo-26-2053-2008.
dc.identifier.citedreferenceAnderson, B. J., M. J. Engebretsson, S. P. Rounds, L. J. Zanetti, and T. A. Potemra ( 1990 ), A statistical study of Pc3‐5 pulsations observed by the AMPTE/CCE Magnetic Field Experiment 1. Occurrence distribution, J. Geophys. Res., 95, 10,495 – 10,523, doi: 10.1029/JA095iA07p10495.
dc.identifier.citedreferenceBame, S. J., J. R. Asbridge, W. C. Feldman, J. T. Gosling, and R. D. Zwickl ( 1981 ), Bi‐directional streaming of solar wind electrons >80 eV: ISEE evidence for a closed‐field structure within the drive gas of an interplanetary shock, Geophys. Res. Lett., 8, 173 – 176, doi: 10.1029/GL008i002p00173.
dc.identifier.citedreferenceBaumjohann, W., and Y. Kamide ( 1984 ), Hemispherical Joule heating and the AE indices, J. Geophys. Res., 89, 383 – 388, doi: 10.1029/JA089iA01p00383.
dc.identifier.citedreferenceBaumjohann, W., G. Paschmann, T. Nagai, and H. Luhr ( 1991 ), Superposed epoch analysis of the substorm plasma sheet, J. Geophys. Res., 96, 11,605 – 11,608, doi: 10.1029/91JA00775.
dc.identifier.citedreferenceBelian, R. D., J. E. Borovsky, R. J. Nemzek, and C. W. Smith ( 1994 ), Random and periodic substorms and their origins in the solar wind, Proceedings of the Second International Conference on Substorms, p. 463, Univ. of Alaska.
dc.identifier.citedreferenceBelian, R. D., T. E. Cayton, and G. D. Reeves ( 1995 ), Quasi‐periodic global substorm generated flux variations observed at geosynchronous orbit, in Space Plasmas: Coupling Between Small and Medium Scale Processes, Geophys. Monogr. Ser., vol. 86, edited by M. Ashour‐Abdalla, T. Chang, and P. Dusenbery, 143 pp., AGU, Washington, D. C.
dc.identifier.citedreferenceBelian, R. D., T. E. Cayton, R. A. Christiansen, J. C. Ingraham, M. M. Meier, G. D. Reeves, and A. J. Lazarus ( 1996 ), Relativistic electrons in the outer‐zone: An 11 year cycle; Their relation to the solar wind, in AIP Proceedings 383 Workshop on the Earth’s Trapped Particle Environment, edited by G. D. Reeves, p. 13, Am. Inst. of Physics, Woodbury, New York.
dc.identifier.citedreferenceBiernat, H. K., N. V. Erkaev, C. J. Farrugia, D. F. Bogl, and W. Schaffenberger ( 2000 ), MHD effects of the solar wind flow around planets, Nonlinear Processes Geophys., 7, 201, doi: 10.5194/npg-7-201-2000.
dc.identifier.citedreferenceBirn, J., M. F. Thomsen, J. E. Borovsky, G. D. Reeves, D. J. McComas, R. D. Belian, and M. Hesse ( 1998 ), Substorm electron injections: Geosynchronous observations and test particle simulations, J. Geophys. Res., 103, 9235 – 9248, doi: 10.1029/97JA02635.
dc.identifier.citedreferenceBirn, J., M. F. Thomsen, J. E. Borovsky, G. D. Reeves, and M. Hesse ( 2000 ), Particle acceleration in the dynamic magnetotail, Phys. Plasmas, 7, 2149, doi: 10.1063/1.874035.
dc.identifier.citedreferenceBorovsky, J. E. ( 2004 ), Global sawtooth oscillations of the magnetosphere, Eos Trans. AGU, 85 ( 49 ), 525, doi: 10.1029/2004EO490009.
dc.identifier.citedreferenceBorovsky, J. E. ( 2008 ), The flux‐tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?, J. Geophys. Res., 113, A08110, doi: 10.1029/2007JA012684.
dc.identifier.citedreferenceBorovsky, J. E. ( 2010 ), On the variations of the solar‐wind magnetic field about the Parker‐spiral direction, J. Geophys. Res., 115, A09101, doi: 10.1029/2009JA015040.
dc.identifier.citedreferenceBorovsky, J. E. ( 2012 ), The velocity and magnetic‐field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties, J. Geophys. Res., 117, A05104, doi: 10.1029/2011JA017499.
dc.identifier.citedreferenceBorovsky, J. E. ( 2013 ), Physics based solar‐wind driver functions for the magnetosphere: Combining the reconnection‐coupled MHD generator with the viscous interaction, J. Geophys. Res. Space Physics, 118, 7119 – 7150, doi: 10.1002/jgra.50557.
dc.identifier.citedreferenceBorovsky, J. E., and J. Birn ( 2014 ), The solar‐wind electric field does not control the dayside reconnection rate, J. Geophys. Res. Space Physics, 119, 751 – 760, doi: 10.1002/2013JA019193.
dc.identifier.citedreferenceBorovsky, J. E., and T. E. Cayton ( 2011 ), Entropy mapping of the outer electron radiation belt between the magnetotail and geosynchronous orbit, J. Geophys. Res., 116, A06216, doi: 10.1029/2011JA016470.
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2006 ), The differences between CME‐driven storms and CIR‐driven storms, J. Geophys. Res., 111, A07S08, doi: 10.1029/2005JA011447.
dc.identifier.citedreferenceBorovsky, J. E., and R. J. Nemzek ( 1994 ), Substorm Statistics: Occurrences and amplitudes, Proceedings of the Second International Conference on Substorms, p. 93, Univ. of Alaska.
dc.identifier.citedreferenceBorovsky, J. E., R. J. Nemzek, and R. D. Belian ( 1993 ), The occurrence rate of magnetospheric‐substorm onsets: Random and periodic substorms, J. Geophys. Res., 98, 3807 – 3813, doi: 10.1029/92JA02556.
dc.identifier.citedreferenceBorovsky, J. E., B. Lavraud, and M. M. Kuznetsova ( 2009 ), Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere, J. Geophys. Res., 114, A03224, doi: 10.1029/2009JA014058.
dc.identifier.citedreferenceBorovsky, J. E., D. T. Welling, M. F. Thomsen, and M. H. Denton ( 2014 ), Long‐lived plasmaspheric drainage plumes: Where does the plasma come from?, J. Geophys. Res. Space Physics, 119, 6496 – 6520, doi: 10.1002/2014JA020228.
dc.identifier.citedreferenceBorovsky, J. E., T. E. Cayton, M. H. Denton, R. D. Belian, R. A. Christensen, and J. C. Ingraham ( 2016 ), The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high‐speed‐stream‐driven storms, J. Geophys. Res. Space Physics, 121, 5449 – 5488, doi: 10.1002/2016JA022520.
dc.identifier.citedreferenceBrambles, O. J., W. Lotko, B. Zhang, M. Wiltberger, J. Lyon, and R. J. Strangeway ( 2011 ), Magnetosphere sawtooth oscillations induced by ionospheric outflow, Science, 332, 1183, doi: 10.1126/science.1202869.
dc.identifier.citedreferenceBrambles, O. J., W. Lotko, B. Zhang, J. Ouellette, J. Lyon, and M. Wiltberger ( 2013 ), The effects of ionospheric outflow on ICME and SIR driven sawtooth events, J. Geophys. Res. Space Physics, 118, 6026 – 6041, doi: 10.1002/jgra.50522.
dc.identifier.citedreferenceCaan, M. N., R. L. McPherron, and C. T. Russell ( 1977 ), Characteristics of the association between interplanetary magnetic field and substorms, J. Geophys. Res., 82, 4837 – 4842, doi: 10.1029/JA082i029p04837.
dc.identifier.citedreferenceCaan, M. N., R. L. McPherron, and C. T. Russell ( 1978 ), The statistical magnetic signature of magnetospheric substorms, Planet. Space Sci., 26, 269, doi: 10.1016/0032-0633(78)90092-2.
dc.identifier.citedreferenceCai, X., and C. R. Clauer ( 2009 ), Investigation of the period of sawtooth events, J. Geophys. Res., 114, A06201, doi: 10.1029/2008JA013764.
dc.identifier.citedreferenceCai, X., M. G. Henderson, and C. R. Clauer ( 2006 ), A statistical study of magnetic dipolarization for sawtooth events and isolated substorms at geosynchronous orbit with GOES data, Ann. Geophys., 24 ( 12 ), 3481.
dc.identifier.citedreferenceCai, X., J.‐C. Zhang, C. R. Clauer, and M. W. Liemohn ( 2011 ), Relationship between sawtooth events and magnetic storms, J. Geophys. Res., 116, A07208, doi: 10.1029/2010JA016310.
dc.identifier.citedreferenceCassak, P. A., and M. A. Shay ( 2007 ), Scaling of asymmetric magnetic reconnection: General theory and collisional simulations, Phys. Plasmas, 14, 102114, doi: 10.1063/1.2795630.
dc.identifier.citedreferenceCayton, T. E., and R. D. Belian ( 2007 ), Numerical modeling of the synchronous orbit particle analyzer (SOPA, Version 2) that flew on S/C 1990‐095, LA Rep. LA‐14335, Los Alamos Natl. Lab., Los Alamos, N. M.
dc.identifier.citedreferenceCayton, T. E., R. D. Belian, S. P. Gary, T. A. Fritz, and D. N. Baker ( 1989 ), Energetic electron components at geosynchronous orbit, Geophys. Res. Lett., 16, 147 – 150, doi: 10.1029/GL016i002p00147.
dc.identifier.citedreferenceChu, X., R. L. McPherron, T.‐S. Hsu, and V. Angelopoulos ( 2015 ), Solar cycle dependence of substorm occurrence and duration: Implications for onset, J. Geophys. Res. Space Physics, 120, 2808 – 2818, doi: 10.1002/2015JA021104.
dc.identifier.citedreferenceCrooker, N. U., S. W. Kahler, D. E. Larson, and R. P. Lin ( 2004 ), Large‐scale magnetic field inversions at sector boundaries, J. Geophys. Res., 109, A03108, doi: 10.1029/2003JA010278.
dc.identifier.citedreferenceDai, L., J. R. Wygant, C. A. Cattell, S. Thaller, K. Derten, A. Beneman, X. Tang, R. H. Friedel, S. G. Claudpierre, and X. Tao ( 2014 ), Evidence for injection of relativistic electrons into the Earth’s outer radiation belt via intense substorm electric fields, Geophys. Res. Lett., 41, 1133 – 1141, doi: 10.1002/2014GL059228.
dc.identifier.citedreferenceDeForest, S. E., and C. E. McIlwain ( 1971 ), Plasma clouds in the magnetosphere, J. Geophys. Res., 76, 3587 – 3611, doi: 10.1029/JA076i016p03587.
dc.identifier.citedreferenceDeJong, A. D., A. J. Ridley, X. Cai, and C. R. Clauer ( 2009 ), A statistical study of BRIs (SMCs), isolated substorms, and individual sawtooth injections, J. Geophys. Res., 114, A08215, doi: 10.1029/2008JA013870.
dc.identifier.citedreferenceDenton, M. H., J. E. Borovsky, and T. E. Cayton ( 2010 ), A density‐temperature description of the outer electron radiation belt during geomagnetic storms, J. Geophys. Res., 115, A01208, doi: 10.1029/2009JA014183.
dc.identifier.citedreferenceFairfield, D. H., and L. J. Cahill ( 1966 ), Transition region magnetic field and polar magnetic disturbances, J. Geophys. Res., 71, 155 – 169, doi: 10.1029/JZ071i001p00155.
dc.identifier.citedreferenceFok, M.‐C., T. E. Moore, and W. N. Spjeldvik ( 2001 ), Rapid enhancement of radiation belt electron fluxes due to substorm depolarization of the geomagnetic field, J. Geophys. Res., 106, 3873 – 3882, doi: 10.1029/2000JA000150.
dc.identifier.citedreferenceForsyth, C., I. J. Rae, J. C. Coxon, M. P. Freeman, C. M. Jackman, J. Gjerloev, and A. N. Fazakerley ( 2015 ), A new technique for determining Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE), J. Geophys. Res. Space Physics, 120, 10,592 – 10,606, doi: 10.1002/2015JA021343.
dc.identifier.citedreferenceFreeman, M. P., and S. K. Morley ( 2004 ), A minimal substorm model that explains the observed statistical distribution of times between substorms, Geophys. Res. Lett., 31, L12807, doi: 10.1029/2004GL019989.
dc.identifier.citedreferenceFreeman, M. P., and S. K. Morley ( 2009 ), No evidence for externally triggered substorms based on superposed epoch analysis of IMF Bz, Geophys. Res. Lett., 36, L21101, doi: 10.1029/2009GL040621.
dc.identifier.citedreferenceFriedel, R. H. W., G. D. Reeves, and T. Obara ( 2002 ), Relativistic electron dynamics in the inner magnetosphere—A review, J. Atmos. Sol. Terr. Phys., 64, 265, doi: 10.1016/S1364-6826(01)00088-8.
dc.identifier.citedreferenceGjerloev, J. W. ( 2012 ), The SuperMAG data processing technique, J. Geophys. Res., 117, A09213, doi: 10.1029/2012JA017683.
dc.identifier.citedreferenceGuo, J., T. I. Pulkkinen, E. I. Tanskanen, X. Feng, B. A. Emery, H. Liu, C. Liu, and D. Zhong ( 2014 ), Annual variations in westward auroral electrojet and substorm occurrence rate during solar cycle 23, J. Geophys. Res. Space Physics, 119, 2061 – 2068, doi: 10.1002/2013JA019742.
dc.identifier.citedreferenceHe, Z., H. Zhu, S. Liu, Q. Zong, Y. Wang, R. Lin, L. Shi, and J. Gong ( 2015 ), Correlated observations and simulations on the buildup of radiation belt electron fluxes driven by substorm injections and chorus waves, Astrophys. Space Sci., 355, 245.
dc.identifier.citedreferenceHenderson, M. G. ( 2004 ), The May 2–3, 1986 CDAW‐9C interval: A sawtooth event, Geophys. Res. Lett., 31, L11804, doi: 10.1029/2004GL019941.
dc.identifier.citedreferenceHenderson, M. G., G. D. Reeves, R. Skoug, M. F. Thomsen, M. H. Denton, S. B. Mende, T. J. Immel, P. C. Brandt, and H. J. Singer ( 2006a ), Magnetospheric and auroral activity during the 18 April 2002 sawtooth event, J. Geophys. Res., 111, A01S90, doi: 10.1029/2005JA011111.
dc.identifier.citedreferenceHenderson, M. G., et al. ( 2006b ), Substorms during the 10–11 August 2000 sawtooth event, J. Geophys. Res., 111, A06206, doi: 10.1029/2005JA011111.
dc.identifier.citedreferenceHill, T. W., A. Dessler, and R. A. Wolf ( 1976 ), Mercury and Mars: The role of ionospheric conductivity in the acceleration of magnetospheric particles, Geophys. Res. Lett., 3, 429 – 432, doi: 10.1029/GL003i008p00429.
dc.identifier.citedreferenceHones, E. W. ( 1977 ), Substorm processes in the magnetotail: Comments on ‘On hot tenuous plasmas, fireballs, and boundary layers in the Earth’s magnetotail’, by L. A. Frank, K. L. Ackerson, and R. P. Lepping, J. Geophys. Res., 82, 5633 – 5643.
dc.identifier.citedreferenceHsu, T.‐S., and R. L. McPherron ( 2002 ), An evaluation of the statistical significance of the association between northward turnings of the interplanetary magnetic field and substorm expansion onsets, J. Geophys. Res., 107 ( A11 ), 1398, doi: 10.1029/2000JA000125.
dc.identifier.citedreferenceHsu, T.‐S., and R. L. McPherron ( 2009 ), A statistical study of the spatial structure of interplanetary magnetic field substorm triggers and their associated magnetic response, J. Geophys. Res., 114, A02223, doi: 10.1029/2008JA013439.
dc.identifier.citedreferenceHsu, T.‐S., and R. L. McPherron ( 2012 ), A statistical analysis of substorm associated tail activity, Adv. Space Res., 50, 1317, doi: 10.1016/j.asr.2012.06.034.
dc.identifier.citedreferenceHuang, C.‐S., G. D. Reeves, J. E. Borovsky, R. M. Skoug, Z. Y. Pu, and G. Le ( 2003a ), Periodic magnetospheric substorms and their relationship with solar wind variations, J. Geophys. Res., 108 ( A6 ), 1255. doi: 10.1029/2002JA009704.
dc.identifier.citedreferenceHuang, C.‐S., J. C. Foster, G. D. Reeves, G. Le, H. U. Frey, C. J. Pollock, and J.‐M. Jahn ( 2003b ), Periodic magnetospheric substorms: Multiple space‐based and ground‐based instrumental observations, J. Geophys. Res., 108 ( A11 ), 1411, doi: 10.1029/2003JA009992.
dc.identifier.citedreferenceHuang, C.‐S., G. Lee, and G. D. Reeves ( 2004 ), Periodic magnetospheric substorms during fluctuation interplanetary magnetic field Bz, Geophys. Res. Lett, 31, L14801, doi: 10.1029/2004GL020180.
dc.identifier.citedreferenceHuang, C.‐S., G. D. Reeves, G. Le, and K. Yumoto ( 2005 ), Are sawtooth oscillations of energetic plasma particle fluxes caused by periodic substorms or driven by solar wind pressure enhancements?, J. Geophys. Res., 110, A07207, doi: 10.1029/2004JD005101.
dc.identifier.citedreferenceIngraham, J. C., T. E. Cayton, R. D. Belian, R. A. Christensen, R. H. W. Friedel, M. M. Meier, G. D. Reeves, and M. Tuszewski ( 2001 ), Substorm injection of relativistic electrons to geosynchronous orbit during the great magnetic storm of March 24, 1991, J. Geophys. Res., 106, 25,759 – 25,776, doi: 10.1029/2000JA000458.
dc.identifier.citedreferenceInternational Telegraph, and Telephone Corporation ( 1979 ), Reference data for radio engineers, sect. 42‐5, Howard Sams, Indianapolis.
dc.identifier.citedreferenceKahler, S., and R. P. Lin ( 1994 ), The determination of interplanetary magnetic field polarities around sector boundaries using E > 2 keV electrons, Geophys. Res. Lett., 21, 1575 – 1578, doi: 10.1029/94GL01362.
dc.identifier.citedreferenceKamide, Y., and C. E. McIlwain ( 1974 ), The onset time of magnetospheric substorms determined from ground and synchronous satellite records, J. Geophys. Res., 79, 4787 – 4790, doi: 10.1029/JA079i031p04787.
dc.identifier.citedreferenceKim, H.‐J., A. A. Chan, R. A. Wolf, and J. Birn ( 2000 ), Can substorms produce relativistic outer belt electrons?, J. Geophys. Res., 105, 7721 – 7735, doi: 10.1029/1999JA900465.
dc.identifier.citedreferenceKing, J. H., and N. E. Papitashvili ( 2005 ), Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, doi: 10.1029/2004JA010649.
dc.identifier.citedreferenceKlein, L. W., and L. F. Burlaga ( 1982 ), Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 87, 613 – 624, doi: 10.1029/JA087iA02p00613.
dc.identifier.citedreferenceLavraud, B., and J. E. Borovsky ( 2008 ), Altered solar wind‐magnetosphere interaction at low Mach numbers: Coronal mass ejections, J. Geophys. Res., 113, A00B08, doi: 10.1029/2008JA013192.
dc.identifier.citedreferenceLavraud, B., J. E. Borovsky, A. J. Ridley, E. W. Pogue, M. F. Thomsen, H. Reme, A. N. Fazakerley, and E. A. Lucek ( 2007 ), Strong bulk plasma acceleration in Earth’s magnetosheath: A magnetic slingshot effect?, Geophys. Res. Lett., 34, L14102, doi: 10.1029/2007GL030024.
dc.identifier.citedreferenceLavraud, B., et al. ( 2013 ), Asymmetry of magnetosheath flows and magnetopause shape during low Alfven Mach number solar wind, J. Geophys. Res. Space Physics, 118, 1089 – 1100, doi: 10.1002/jgra.50145.
dc.identifier.citedreferenceLee, D.‐Y., and K. W. Min ( 2002 ), Statistical features of substorm indicators during geomagnetic storms, J. Geophys. Res., 107 ( A11 ), 1371, doi: 10.1029/2002JA009243.
dc.identifier.citedreferenceLennartsson, W. ( 1989 ), Energetic (0.1‐ to 16‐keV/e) magnetospheric ion composition at different levels of solar F10.7, J. Geophys. Res., 94, 3600 – 3610, doi: 10.1029/JA094iA04p03600.
dc.identifier.citedreferenceLepping, R. P., C.‐C. Wu, and D. B. Berdichevsky ( 2005 ), Automatic identification of magnetic cloud‐like regions at 1 AU: Occurrence rate and other properties, Ann. Geophys., 23, 2687, doi: 10.5194/angeo-23-2687-2005.
dc.identifier.citedreferenceLezniak, T. W., R. L. Arnoldy, G. K. Parks, and J. R. Winkler ( 1968 ), Measurements and intensity of energetic electrons at the equator at 6.6 RE, Radio Sci., 3, 710 – 714.
dc.identifier.citedreferenceLopez, R. E., and T. von Rosenvinge ( 1993 ), A statistical relationship between the geosynchronous magnetic field and substorm electrojet magnitude, J. Geophys. Res., 98, 3851 – 3857, doi: 10.1029/92JA01660.
dc.identifier.citedreferenceLopez, R. E., M. Wiltberger, S. Hernandez, and J. G. Lyon ( 2004 ), Solar wind density control of energy transfer to the magnetosphere, Geophys. Res. Let., 31, L08804, doi: 10.1029/2003GL018780.
dc.identifier.citedreferenceLopez, R. E., S. Hernandez, K. Hallman, R. Valenzuela, J. Seiler, P. C. Anderson, and M. R. Hairston ( 2008 ), Field‐aligned currents in the polar cap during saturation of the polar cap potential, J. Atmos. Sol. Terr. Phys., 70, 555, doi: 10.1016/j.jastp.2007.08.072.
dc.identifier.citedreferenceLyons, L. R., G. T. Blanchard, J. C. Samson, R. P. Lepping, T. Yamamoto, and T. Moretto ( 1997 ), Coordinated observations demonstrating external substorm triggering, J. Geophys. Res., 102, 27,039 – 27,051, doi: 10.1029/97JA02639.
dc.identifier.citedreferenceMcAllister, A. H., M. Dryer, P. McIntosh, H. Singer, and L. Weiss ( 1996 ), A large polar crown coronal mass ejection and a “problem” geomagnetic storms: April 14–23, 1994, J. Geophys. Res., 101, 13,497 – 13,515, doi: 10.1029/96JA00510.
dc.identifier.citedreferenceMcDiarmid, I. B., and J. R. Burrows ( 1965 ), On an electron source fore the outer Van Allen radiation zone, Can. J. Phys., 43, 1161, doi: 10.1139/p65-113.
dc.identifier.citedreferenceMcPherron, R. L., C. T. Russell, and M. P. Aubry ( 1973 ), Satellite studies of magnetospheric substorms on August 15, 1968 9. Phenomenological model for substorms, J. Geophys. Res., 78, 3131 – 3149.
dc.identifier.citedreferenceMcPherron, R. L., T. Terasawa, and A. Nishida ( 1986 ), Solar wind triggering of substorm expansion onset, J. Geomag. Geoelectr., 38, 1089, doi: 10.5636/jgg.38.1089.
dc.identifier.citedreferenceMeredith, N. P., R. B. Horne, and R. R. Anderson ( 2001 ), Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies, J. Geophys. Res., 106, 13,165 – 13,178.
dc.identifier.citedreferenceMerkin, V. G., A. S. Sharma, K. Papadopoulos, G. Milikh, J. Lyon, and C. Goodrich ( 2005a ), Global MHD simulations of the strongly driven magnetosphere: Modeling of the transpolar potential saturation, J. Geophys. Res., 110, A09203, doi: 10.1029/2004JA010993.
dc.identifier.citedreferenceMerkin, V. G., A. S. Sharma, K. Papadopoulos, G. Milikh, J. Lyon, and C. Goodrich ( 2005b ), Relationship between the ionospheric conductance, field aligned current, and magnetopause geometry: Global MHD simulations, Planet. Space Sci., 53, 873, doi: 10.1016/j.pss.2005.04.001.
dc.identifier.citedreferenceMorley, S. K., and M. P. Freeman ( 2007 ), On the association between northward turnings on the interplanetary magnetic field and substorm onsets, Geophys. Res. Lett., 34, L08104, doi: 10.1029/2006GL028891.
dc.identifier.citedreferenceMorley, S. K., and M. G. Henderson ( 2010 ), Comment on “Investigation of the period of sawtooth events” by X. Cai and C. R. Clauer, J. Geophys. Res., 115, A02216, doi: 10.1029/2009JA014721.
dc.identifier.citedreferenceNevanlinna, H., and T. I. Pulkkinen ( 1998 ), Solar cycle correlations of substorm and auroral occurrence frequency, Geophys. Res. Lett., 25, 3087 – 3090, doi: 10.1029/98GL02335.
dc.identifier.citedreferenceNewell, P. T., and J. W. Gjerloev ( 2011 ), Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power, J. Geophys. Res., 116, A12211, doi: 10.1029/2011JA016779.
dc.identifier.citedreferenceNewell, P. T., and K. Liou ( 2011 ), Solar wind driving and substorm triggering, J. Geophys. Res., 116, A03229, doi: 10.1029/2010JA016139.
dc.identifier.citedreferenceNewell, P. T., T. Sotirelis, K. Liou, C.‐I. Meng, and F. J. Rich ( 2007 ), A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, A01206, doi: 10.1029/2006JA012015.
dc.identifier.citedreferenceNoah, M. A., and W. J. Burke ( 2013 ), Sawtooth‐substorm connections: A closer look, J. Geophys. Res. Space Physics, 118, 5136 – 5148, doi: 10.1002/jgra.50440.
dc.identifier.citedreferenceOber, D. M., N. C. Maynard, and W. J. Burke ( 2003 ), Testing the Hill model of transpolar potential saturation, J. Geophys. Res., 108 ( A12 ), 1467, doi: 10.1029/2003JA010154.
dc.identifier.citedreferenceOber, D. M., N. C. Maynard, W. J. Burke, G. R. Wilson, and K. D. Siebert ( 2006 ), “Shoulders” on the high‐latitude magnetopause: Polar/GOES observations, J. Geophys. Res., 111, A10213, doi: 10.1029/2006JA011799.
dc.identifier.citedreferenceOuellette, J. E., O. J. Brambles, J. G. Lyon, W. Lotko, and B. N. Rogers ( 2013 ), Properties of outflow‐driven sawtooth substorms, J. Geophys. Res. Space Physics, 118, 3223 – 3232, doi: 10.1002/jgra.50309.
dc.identifier.citedreferencePartamies, N., T. I. Pulkkinen, R. L. McPherron, K. McWilliams, C. R. Bryant, E. Tanskanen, H. J. Singer, G. D. Reeves, and M. F. Thomsen ( 2009 ), Statistical survey on sawtooth events, SMCs and isolated substorms, Adv. Space Res., 44, 376, doi: 10.1016/j.asr.2009.03.013.
dc.identifier.citedreferencePulkkinen, T. I., N. Partamies, R. L. McPherron, M. Henderson, G. D. Reeves, M. F. Thomsen, and H. J. Singer ( 2007 ), Comparative statistical analysis of storm time activations and sawtooth events, J. Geophys. Res., 112, A01205, doi: 10.1029/2006JA012024.
dc.identifier.citedreferenceRaeder, J., Y. L. Wang, T. J. Fuller‐Rowell, and H. J. Singer ( 2001 ), Global simulation of magnetospheric space weather effects of the Bastille day storm, Sol. Phys., 204, 325, doi: 10.1023/A:1014228230714.
dc.identifier.citedreferenceRostoker, G. ( 1983 ), Triggering of expansive phase intensifications of magnetospheric substorms by northward turnings of the interplanetary magnetic field, J. Geophys. Res., 88, 6981 – 6993, doi: 10.1029/JA088iA09p06981.
dc.identifier.citedreferenceRussell, C. T., and R. L. McPherron ( 1973 ), Semiannual variation of geomagnetic activity, J. Geophys. Res., 78, 92 – 108, doi: 10.1029/JA078i001p00092.
dc.identifier.citedreferenceSauvaud, J.‐A., and J. R. Winckler ( 1980 ), Dynamics of plasma, energetic particles, and fields near synchronous orbit in the nighttime sector during magnetospheric substorms, J. Geophys. Res., 85, 2043 – 2056, doi: 10.1029/JA085iA05p02043.
dc.identifier.citedreferenceSchield, M. A. ( 1969 ), Pressure balance between solar wind and magnetosphere, J. Geophys. Res., 74, 1275 – 1286, doi: 10.1029/JA074i005p01275.
dc.identifier.citedreferenceSemenov, V. S., D. I. Kubyshkina, M. V. Kubyshkina, I. V. Kubyshkin, and N. Partamies ( 2015 ), On the correlation between the fast solar wind flow changes and substorm occurrence, Geophys. Res. Lett., 42, 5117 – 5124, doi: 10.1002/2015GL064806.
dc.identifier.citedreferenceShue, J.‐H., and Y. Kamide ( 2001 ), Effects of solar wind density on auroral electrojets, Geophys. Res. Lett., 28, 2181 – 2184, doi: 10.1029/2000GL012858.
dc.identifier.citedreferenceSiscoe, G., J. Rader, and A. J. Ridley, Transpolar potential saturation models compared ( 2004 ), J. Geophys. Res., 109, A09203, doi: 10.1029/2003JA010318.
dc.identifier.citedreferenceSiscoe, G. L. ( 2011 ), Aspects of global coherence of magnetospheric behavior, J. Atmos. Sol. Terr. Phys., 73, 402, doi: 10.1016/j.jastp.2010.11.005.
dc.identifier.citedreferenceSiscoe, G. L., N. U. Crooker, and K. D. Siebert ( 2002 ), Transpolar potential saturation: Roles of the region 1 current system and solar wind ram pressure, J. Geophys. Res., 107 ( A10 ), 1321, doi: 10.1029/2001JA009176.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.