Show simple item record

4D in vivo imaging of glomerular barrier function in a zebrafish podocyte injury model

dc.contributor.authorSiegerist, F.
dc.contributor.authorZhou, W.
dc.contributor.authorEndlich, K.
dc.contributor.authorEndlich, N.
dc.date.accessioned2017-05-10T17:48:17Z
dc.date.available2018-07-09T17:42:24Zen
dc.date.issued2017-05
dc.identifier.citationSiegerist, F.; Zhou, W.; Endlich, K.; Endlich, N. (2017). "4D in vivo imaging of glomerular barrier function in a zebrafish podocyte injury model." Acta Physiologica 220(1): 167-173.
dc.identifier.issn1748-1708
dc.identifier.issn1748-1716
dc.identifier.urihttps://hdl.handle.net/2027.42/136708
dc.description.abstractAimZebrafish larvae with their simplified pronephros are an ideal model to study glomerular physiology. Although several groups use zebrafish larvae to assess glomerular barrier function, temporary or slight changes are still difficult to measure. The aim of this study was to investigate the potential of in vivo two‐photon microscopy (2‐PM) for long‐term imaging of glomerular barrier function in zebrafish larvae.MethodsAs a proof of principle, we adapted the nitroreductase/metronidazole model of targeted podocyte ablation for 2‐PM. Combination with a strain, which expresses eGFP‐vitamin D‐binding protein in the blood plasma, led to a strain that allowed induction of podocyte injury with parallel assessment of glomerular barrier function. We used four‐dimensional (4D) 2‐PM to assess eGFP fluorescence over 26 h in the vasculature and in tubules of multiple zebrafish larvae (5 days post‐fertilization) simultaneously.ResultsBy 4D 2‐PM, we observed that, under physiological conditions, eGFP fluorescence was retained in the vasculature and rarely detected in proximal tubule cells. Application of metronidazole induced podocyte injury and cell death as shown by TUNEL staining. Induction of podocyte injury resulted in a dramatic decrease of eGFP fluorescence in the vasculature over time (about 50% and 90% after 2 and 12 h respectively). Loss of vascular eGFP fluorescence was paralleled by an endocytosis‐mediated accumulation of eGFP fluorescence in proximal tubule cells, indicating proteinuria.ConclusionWe established a microscopy‐based method to monitor the dynamics of glomerular barrier function during induction of podocyte injury in multiple zebrafish larvae simultaneously over 26 h.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherglomerular filtration
dc.subject.otherpodocyte injury
dc.subject.otherproteinuria
dc.subject.otherproximal tubule
dc.title4D in vivo imaging of glomerular barrier function in a zebrafish podocyte injury model
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136708/1/apha12754.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136708/2/apha12754_am.pdf
dc.identifier.doi10.1111/apha.12754
dc.identifier.sourceActa Physiologica
dc.identifier.citedreferencePeti‐Peterdi, J. & Sipos, A. 2010. A high‐powered view of the filtration barrier. J Am Soc Nephrol 21, 1835 – 1841.
dc.identifier.citedreferenceHentschel, D.M., Mengel, M., Boehme, L., Liebsch, F., Albertin, C., Bonventre, J.V., Haller, H. & Schiffer, M. 2007. Rapid screening of glomerular slit diaphragm integrity in larval zebrafish. Am J Physiol Renal Physiol 293, F1746 – F1750.
dc.identifier.citedreferenceHer, G.M., Chiang, C.C., Chen, W.Y. & Wu, J.L. 2003. In vivo studies of liver‐type fatty acid binding protein (L‐FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett 538, 125 – 133.
dc.identifier.citedreferenceHer, G.M., Chiang, C.C. & Wu, J.L. 2004. Zebrafish intestinal fatty acid binding protein (I‐FABP) gene promoter drives gut‐specific expression in stable transgenic fish. Genesis 38, 26 – 31.
dc.identifier.citedreferenceHuang, J., McKee, M., Huang, H.D., Xiang, A., Davidson, A.J. & Lu, H.A.J. 2013. A zebrafish model of conditional targeted podocyte ablation and regeneration. Kidney Int 83, 1193 – 1200.
dc.identifier.citedreferenceKistler, A.D., Caicedo, A., Abdulreda, M.H., Faul, C., Kerjaschki, D., Berggren, P.O., Reiser, J. & Fornoni, A. 2014. In vivo imaging of kidney glomeruli transplanted into the anterior chamber of the mouse eye. Sci Rep 4, 3872.
dc.identifier.citedreferenceKotb, A.M., Müller, T., Xie, J., Anand‐Apte, B., Endlich, K. & Endlich, N. 2014. Simultaneous assessment of glomerular filtration and barrier function in live zebrafish. Am J Physiol Renal Physiol 307, 34.
dc.identifier.citedreferenceKotb, A.M., Simon, O., Blumenthal, A., Vogelgesang, S., Dombrowski, F., Amann, K., Zimmermann, U., Endlich, K. & Endlich, N. 2016. Knockdown of ApoL1 in zebrafish larvae affects the glomerular filtration barrier and the expression of nephrin. PLoS One 11, e0153768.
dc.identifier.citedreferenceKramer‐Zucker, A.G., Wiessner, S., Jensen, A.M. & Drummond, I.A. 2005. Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes. Dev Biol 285, 316 – 329.
dc.identifier.citedreferenceMüller, T., Rumpel, E., Hradetzky, S., Bollig, F., Wegner, H., Blumenthal, A., Greinacher, A., Endlich, K. & Endlich, N. 2011. Non‐muscle myosin IIA is required for the development of the zebrafish glomerulus. Kidney Int 80, 1055 – 1063.
dc.identifier.citedreferenceNoel, E.S., Reis, M.D., Arain, Z. & Ober, E.A. 2010. Analysis of the Albumin/alpha‐Fetoprotein/Afamin/Group specific component gene family in the context of zebrafish liver differentiation. Gene Expr Patterns 10, 237 – 243.
dc.identifier.citedreferencePavenstädt, H., Kriz, W. & Kretzler, M. 2003. Cell biology of the glomerular podocyte. Physiol Rev 83, 253 – 307.
dc.identifier.citedreferencePelster, B. & Burggren, W.W. 1996. Disruption of hemoglobin oxygen transport does not impact oxygen‐dependent physiological processes in developing embryos of zebra fish (Danio rerio). Circ Res 79, 358 – 362.
dc.identifier.citedreferencePisharath, H., Rhee, J.M., Swanson, M.A., Leach, S.D. & Parsons, M.J. 2007. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 124, 218 – 229.
dc.identifier.citedreferenceRider, S.A., Tucker, C.S., del‐Pozo, J., Rose, K.N., MacRae, C.A., Bailey, M.A. & Mullins, J.J. 2012. Techniques for the in vivo assessment of cardio‐renal function in zebrafish (Danio rerio) larvae. J Physiol 590, 1803 – 1809.
dc.identifier.citedreferenceRusso, L.M., Sandoval, R.M., McKee, M., Osicka, T.M., Collins, A.B., Brown, D., Molitoris, B.A. & Comper, W.D. 2007. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells. Retrieval is disrupted in nephrotic states. Kidney Int 71, 504 – 513.
dc.identifier.citedreferenceSchießl, I.M., Hammer, A., Kattler, V., Gess, B., Theilig, F., Witzgall, R. & Castrop, H. 2016. Intravital imaging reveals angiotensin II‐induced transcytosis of albumin by podocytes. J Am Soc Nephrol 27, 731 – 744.
dc.identifier.citedreferenceWan, X., Chen, Z., Choi, W.‐I., Gee, H.Y., Hildebrandt, F. & Zhou, W. 2015. Loss of epithelial membrane protein 2 aggravates podocyte injury via upregulation of caveolin‐1. J Am Soc Nephrol 27, 1066 – 1075.
dc.identifier.citedreferenceWhite, R.M., Sessa, A., Burke, C., Bowman, T., LeBlanc, J., Ceol, C., Bourque, C., Dovey, M., Goessling, W., Burns, C.E. & Zon, L.I. 2008. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183 – 189.
dc.identifier.citedreferenceXie, J., Farage, E., Sugimoto, M. & Anand‐Apte, B. 2010. A novel transgenic zebrafish model for blood‐brain and blood‐retinal barrier development. BMC Dev Biol 10, 76.
dc.identifier.citedreferenceZhou, W. & Hildebrandt, F. 2012. Inducible podocyte injury and proteinuria in transgenic zebrafish. J Am Soc Nephrol 23, 1039 – 1047.
dc.identifier.citedreferenceAshworth, S., Teng, B., Kaufeld, J., Miller, E., Tossidou, I., Englert, C., Bollig, F., Staggs, L., Roberts, I.S.D., Park, J.‐K., Haller, H. & Schiffer, M. 2010. Cofilin‐1 inactivation leads to proteinuria–studies in zebrafish, mice and humans. PLoS One 5, e12626.
dc.identifier.citedreferenceBrahler, S., Yu, H., Suleiman, H., Krishnan, G.M., Saunders, B.T., Kopp, J.B., Miner, J.H., Zinselmeyer, B.H. & Shaw, A.S. 2016. Intravital and kidney slice imaging of podocyte membrane dynamics. J Am Soc Nephrol [Epub ahead of print].
dc.identifier.citedreferenceDrummond, I.A. 2005. Kidney development and disease in the zebrafish. J Am Soc Nephrol 16, 299 – 304.
dc.identifier.citedreferenceDrummond, I.A. & Davidson, A.J. 2010. Zebrafish kidney development. Methods Cell Biol 100, 233 – 260.
dc.identifier.citedreferenceEndlich, N., Simon, O., Göpferich, A., Wegner, H., Moeller, M.J., Rumpel, E., Kotb, A.M. & Endlich, K. 2014. Two‐photon microscopy reveals stationary podocytes in living zebrafish larvae. J Am Soc Nephrol 25, 681 – 686.
dc.identifier.citedreferenceHanke, N., King, B.L., Vaske, B., Haller, H. & Schiffer, M. 2015. A fluorescence‐based assay for proteinuria screening in larval zebrafish (Danio rerio). Zebrafish 12, 372 – 376.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.