Show simple item record

Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient

dc.contributor.authorMay, Rudolf
dc.contributor.authorCatenazzi, Alessandro
dc.contributor.authorCorl, Ammon
dc.contributor.authorSanta‐cruz, Roy
dc.contributor.authorCarnaval, Ana Carolina
dc.contributor.authorMoritz, Craig
dc.date.accessioned2017-05-10T17:48:36Z
dc.date.available2018-07-09T17:42:24Zen
dc.date.issued2017-05
dc.identifier.citationMay, Rudolf; Catenazzi, Alessandro; Corl, Ammon; Santa‐cruz, Roy ; Carnaval, Ana Carolina; Moritz, Craig (2017). "Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient." Ecology and Evolution 7(9): 3257-3267.
dc.identifier.issn2045-7758
dc.identifier.issn2045-7758
dc.identifier.urihttps://hdl.handle.net/2027.42/136724
dc.description.abstractCritical thermal limits are thought to be correlated with the elevational distribution of species living in tropical montane regions, but with upper limits being relatively invariant compared to lower limits. To test this hypothesis, we examined the variation of thermal physiological traits in a group of terrestrial breeding frogs (Craugastoridae) distributed along a tropical elevational gradient. We measured the critical thermal maximum (CTmax; n = 22 species) and critical thermal minimum (CTmin; n = 14 species) of frogs captured between the Amazon floodplain (250 m asl) and the high Andes (3,800 m asl). After inferring a multilocus species tree, we conducted a phylogenetically informed test of whether body size, body mass, and elevation contributed to the observed variation in CTmax and CTmin along the gradient. We also tested whether CTmax and CTmin exhibit different rates of change given that critical thermal limits (and their plasticity) may have evolved differently in response to different temperature constraints along the gradient. Variation of critical thermal traits was significantly correlated with speciesâ elevational midpoint, their maximum and minimum elevations, as well as the maximum air temperature and the maximum operative temperature as measured across this gradient. Both thermal limits showed substantial variation, but CTmin exhibited relatively faster rates of change than CTmax, as observed in other taxa. Nonetheless, our findings call for caution in assuming inflexibility of upper thermal limits and underscore the value of collecting additional empirical data on speciesâ thermal physiology across elevational gradients.A widely held assumption is that climatic niches have not changed along the history of species, both within and among closely related species. Using a phylogenetic framework, this study documents high variability in both elevational distribution and tolerance to heat among closely related species. Our findings suggest that thermal traits in ectotherms can adjust rapidly and so cannot be simply extrapolated from relatives.
dc.publisherProâ Manu
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCTmin
dc.subject.otherAndes
dc.subject.otherphysiological divergence
dc.subject.otherCTmax
dc.subject.otherAmazon
dc.subject.othercritical thermal limits
dc.titleDivergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136724/1/ece32929_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136724/2/ece32929.pdf
dc.identifier.doi10.1002/ece3.2929
dc.identifier.sourceEcology and Evolution
dc.identifier.citedreferenceNavas, C. A. ( 2005 ). Patterns of distribution of anurans in high Andean tropical elevations: Insights from integrating biogeography and evolutionary physiology. Integrative Comparative Biology, 46, 82 â 91.
dc.identifier.citedreferenceMuñoz, M. M., Stimola, M. A., Algar, A. C., Conover, A., Rodriguez, A. J., Landestoy, M. A., Bakken, G. S., & Losos, J. B. ( 2014 ). Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proceedings of the Royal Society B: Biological Sciences, 281, 20132433.
dc.identifier.citedreferenceNavas, C. A. ( 1997 ). Thermal extremes at high elevations in the Andes: Physiological ecology of frogs. Journal of Thermal Biology, 22, 467 â 477.
dc.identifier.citedreferenceNavas, C. A. ( 2003 ). Herpetological diversity along Andean elevational gradients: Links with physiological ecology and evolutionary physiology. Comparative Biochemistry and Physiology Part A, 133, 469 â 485.
dc.identifier.citedreferenceNavas, C. A. & Chauiâ Berlinck, J. G. ( 2007 ). Respiratory physiology of highâ altitude anurans: 55 years of research on altitude and oxygen. Respiratory Physiology & Neurobiology, 158, 307 â 313.
dc.identifier.citedreferencePadial, J. M., Grant, T., & Frost, D. A. ( 2014 ). Molecular systematics of terraranas (Anura: Brachycephaloidea) with an assessment of the effects of alignment and optimality criteria. Zootaxa, 3825, 001 â 132.
dc.identifier.citedreferencePagel, M. ( 1999 ). Inferring the historical patterns of biological evolution. Nature, 401, 877 â 884.
dc.identifier.citedreferenceParadis, E., Claude, J., & Strimmer, K. ( 2004 ). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289 â 290.
dc.identifier.citedreferencePerez, T. M., Stroud, J. T., & Feeley, K. J. ( 2016 ). Thermal trouble in the tropics. Science, 351, 1392 â 1393.
dc.identifier.citedreferencePeters, M. K., Hemp, A., Appelhans, T., et al. ( 2016 ). Predictors of elevational biodiversity gradients change from single taxa to the multiâ taxa community level. Nature Communications, 7, 13736. doi: 10.1038/ncomms13736
dc.identifier.citedreferenceRambaut, A. & Drummond, A. J.. ( 2007 ). Tracer. Version 1.5. Available at: http://tree.bio.ed.ac.uk/ software/tracer/
dc.identifier.citedreferenceRevell, L. J. ( 2008 ). On the analysis of evolutionary change along single branches in a phylogeny. American Naturalist, 172, 140 â 147.
dc.identifier.citedreferenceRevell, L. J. ( 2010a ). Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution., 1, 319 â 329.
dc.identifier.citedreferenceRevell, L. J. ( 2010b ). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217 â 223.
dc.identifier.citedreferenceRonquist, F., & Huelsenbeck, J. P. ( 2003 ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572 â 1574.
dc.identifier.citedreferenceSheldon, K. S., Leaché, A. S., & Cruz, F. B. ( 2015 ). The influence of temperature seasonality on elevational range size across latitude: A test using Liolaemus lizards. Global Ecology and Biogeography, 24, 632 â 641.
dc.identifier.citedreferenceSinervo, B., Méndezâ deâ laâ Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagránâ Santa Cruz, M., et al. ( 2010 ). Erosion of lizard diversity by climate change and altered thermal niches. Science, 328, 894 â 899.
dc.identifier.citedreferenceStephens, M., & Scheet, P. ( 2005 ). Accounting for decay of linkage disequilibrium in haplotype inference and missing data imputation. American Journal of Human Genetics, 76, 449 â 462.
dc.identifier.citedreferenceStephens, M., Smith, N. J., & Donnelly, P. ( 2001 ). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68, 978 â 989.
dc.identifier.citedreferenceSunday, J. M., Bates, A. E., & Dulvy, N. K. ( 2011 ). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B, 278, 1823 â 1830.
dc.identifier.citedreferenceSunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & Huey, R. B. ( 2014 ). Thermalâ safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences, 111 ( 15 ), 5610 â 5615.
dc.identifier.citedreferenceTerborgh, J. ( 1970 ). Distribution on environmental gradients: Theory and preliminary interpretation of distributional patterns in avifauna of Cordillera Vilcabamba, Peru. Ecology, 52, 23 â 40.
dc.identifier.citedreferenceTerborgh, J., & Weske, J. S. ( 1975 ). The role of competition in the distribution of Andean birds. Ecology, 56, 562 â 576.
dc.identifier.citedreferenceVanDerWal, J., Murphy, H. T., Kutt, A. S., Perkins, G. C., Bateman, B. L., Perry, J. L., & Reside, A. E. ( 2012 ). Focus on poleward shifts in species distribution underestimates the fingerprint of climate change. Nature Climate Change, 3, 239 â 243.
dc.identifier.citedreferenceWake, D. B., & Lynch, J. F. ( 1976 ). The distribution, ecology, and evolutionary history of plethodontid salamanders in tropical America. Natural History Museum of Los Angeles County, 25, 1 â 75.
dc.identifier.citedreferenceWiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., et al. ( 2010 ). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13, 1310 â 1324.
dc.identifier.citedreferenceDrummond, A. J., & Rambaut, A. ( 2007 ). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
dc.identifier.citedreferenceDuellman, W. E., & Lehr, E. ( 2009 ). Terrestrialâ breeding Frogs (Strabomantidae) in Peru. Münster: Natur und Tier Verlag. 382 pp.
dc.identifier.citedreferenceFlot, J. F. ( 2010 ). SEQPHASE: A web tool for interconverting PHASE input/output files and FASTA sequence alignments. Molecular Ecology Resources, 10, 162 â 166.
dc.identifier.citedreferenceAdams, D. C. ( 2013 ). Comparing evolutionary rates for different phenotypic traits on a phylogeny using likelihood. Systematic Biology, 62, 181 â 192.
dc.identifier.citedreferenceAguilar, C., Ramírez, C., Rivera, D., Siuâ Ting, K., Suarez, J., & Torres, C. ( 2010 ). Anfibios andinos del Perú fuera de à reas Naturales Protegidas: Amenazas y estado de conservación. Revista Peruana de Biología, 17, 5 â 28.
dc.identifier.citedreferenceAraújo, M. B., Ferriâ Yañez, F., Bozinovic, F., Marquet, P. A., Valladares, F., & Chown, S. ( 2013 ). Heat freezes niche evolution. Ecology Letters, 16 ( 9 ), 1206 â 1219.
dc.identifier.citedreferenceArbogast, B. S., Edwards, S. V., Wakeley, J., Beerli, P., & Slowinski, J. B. ( 2002 ). Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annual Review of Ecology and Systematics, 33, 707 â 740.
dc.identifier.citedreferenceAshton, K. G. ( 2004 ). Comparing phylogenetic signal in intraspecific and interspecific body size datasets. Journal of Evolutionary Biology, 17, 1157 â 1161.
dc.identifier.citedreferenceBiomatters. ( 2013 ). Geneious R6, version 6.1.5 ( http://www.geneious.com/ )
dc.identifier.citedreferenceBlomberg, S. P., Garland, T., & Ives, A. R. ( 2003 ). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57, 717 â 745.
dc.identifier.citedreferenceBrattstrom, B. H. ( 1968 ). Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comparative Biochemistry and physiology, 24, 93 â 111.
dc.identifier.citedreferenceCadena, C. D., Kozak, K. H., Gómez, J. P., Parra, J. L., McCain, C. M., Bowie, R. C. K., â ¦ Graham, C. H. ( 2012 ). Latitude, elevational climatic zonation, and speciation in New World vertebrates. Proceedings of the Royal Society of London B, 279, 194 â 201.
dc.identifier.citedreferenceCatenazzi, A. ( 2011 ). Temperature constraint of elevational range of tropical amphibians: Response to Foreroâ Medina et al. Conservation Biology, 25, 425 â 426.
dc.identifier.citedreferenceCatenazzi, A., Lehr, E., Rodríguez, L. O., & Vredenburg, V. T. ( 2011 ). Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the upper Manu National Park, Peru. Conservation Biology, 25, 382 â 391.
dc.identifier.citedreferenceCatenazzi, A., Lehr, E., & von May, R. ( 2013 ). The amphibians and reptiles of Manu National Park and its buffer zone, Amazon basin and eastern slopes of the Andes, Peru. Biota Neotropica, 13 ( 4 ), 269 â 283.
dc.identifier.citedreferenceCatenazzi, A., Lehr, E., & Vredenburg, V. T. ( 2014 ). Thermal physiology, disease and amphibian declines in the eastern slopes of the Andes. Conservation Biology, 28, 509 â 517.
dc.identifier.citedreferenceCatenazzi, A., & Rodriguez, L. ( 2001 ). Diversidad, distribución y abundancia de anuros en la parte alta de la Reserva de Biosfera del Manu. In L. Rodriguez (Ed.), El Manu y otras experiencias de investigación y manejo de bosques neotropicales (pp. 53 â 57 ). Cusco (Peru): Proâ Manu.
dc.identifier.citedreferenceChen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. ( 2011 ). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024.
dc.identifier.citedreferenceChristian, K. A., Nunez, F., Clos, L., & Diaz, L. ( 1988 ). Thermal relations of some tropical frogs along an altitudinal gradient. Biotropica, 20 ( 3 ), 236 â 239.
dc.identifier.citedreferenceColwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C., & Longino, J. T. ( 2008 ). Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 322, 258 â 261.
dc.identifier.citedreferenceCorl, A., Davis, A. R., Kuchta, S. R., Comendant, T., & Sinervo, B. ( 2010 ). Alternative mating strategies and the evolution of sexual size dimorphism in the sideâ blotched lizard, Uta stansburiana: A populationâ level comparative analysis. Evolution, 64, 79 â 96.
dc.identifier.citedreferenceGarland Jr., T., Harvey, P. H., & Ives, A. R. ( 1992 ). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology, 41, 18 â 32.
dc.identifier.citedreferenceGarland, T. Jr, Bennett, A. F., & Rezende, E. L. ( 2005 ). Phylogenetic approaches in comparative physiology. Journal of Experimental Biology, 208, 3015 â 3035.
dc.identifier.citedreferenceGaston, K. J., & Chown, S. L. ( 1999 ). Elevation and climatic tolerance: A test using dung beetles. Oikos, 86, 584 â 590.
dc.identifier.citedreferenceGhalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J., & Wang, G. ( 2006 ). Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integrative and Comparative Biology, 46, 5 â 17.
dc.identifier.citedreferenceGraham, C. H., Carnaval, A. C., Cadena, C. D., Zamudio, K. R., Roberts, T. E., Parra, J. L., â ¦ Sanders, N. J. ( 2014 ). The origin and maintenance of montane diversity: Integrating evolutionary and ecological processes. Ecography, 37, 711 â 719.
dc.identifier.citedreferenceGunderson, A. R., & Stillman, J. H. ( 2015 ). Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proceedings of the Royal Society B: Biological Sciences, 282, 20150401.
dc.identifier.citedreferenceHarmon, L. J., Weir, J. T., Brock, C., Glor, R. E., & Challenger, W. ( 2008 ). GEIGER: Investigating evolutionary radiations. Bioinformatics, 24, 129 â 131.
dc.identifier.citedreferenceHarvey, P. H., & Pagel, M. D. ( 1991 ). The comparative method in evolutionary biology. Oxford: Oxford University Press.
dc.identifier.citedreferenceHeatwole, H., Mercado, N., & Ortiz, E. ( 1965 ). Comparison of critical thermal maxima of two species of Puerto Rican frogs of the genus Eleutherodactylus. Physiological Zoology, 38, 1 â 8.
dc.identifier.citedreferenceHedges, S. B., Duellman, W. E., & Heinicke, M. P. ( 2008 ). New World directâ developing frogs (Anura: Terrarana): Molecular phylogeny, classification, biogeography, and conservation. Zootaxa, 1737, 1 â 182.
dc.identifier.citedreferenceHo, L. S. T., & Anné, C. ( 2014a ). A linearâ time algorithm for Gaussian and nonâ Gaussian trait evolution models. Systematic Biology, 63, 397 â 408.
dc.identifier.citedreferenceHo, L. S. T. & Anné, C. ( 2014b ). Phylolm: phylogenetic linear regression. R package version 2.1. http://cran.r-project.org/ web/packages/phylolm/(accessed July 2015).
dc.identifier.citedreferenceHofer, U., Bersier, L. F., & Borcard, D. ( 1999 ). Spatial organization of a herpetofauna on an elevational gradient revealed by null model tests. Ecology, 80, 976 â 988.
dc.identifier.citedreferenceHoffmann, A. A., Chown, S. L., & Clusellaâ Trullas, S. ( 2013 ). Upper thermal limits in terrestrial ectotherms: How constrained are they? Functional Ecology, 27, 934 â 949.
dc.identifier.citedreferenceHoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., â ¦ Antonelli, A. ( 2010 ). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927 â 931.
dc.identifier.citedreferenceHuey, R. B., Deutsch, C. A., Tewksbury, J. J., Vitt, L. J., Hertz, P. E., Pérez, H. J. à ., & Garland, T. ( 2009 ). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society of London B: Biological Sciences:, doi: 10.1098/rspb.2008.1957
dc.identifier.citedreferencevon Humboldt, A. ( 1849 ). Aspects of nature in different lands and different climates, with scientific elucidations. Translated by M. Sabine. London: Longman, Brown, Green and Longman.
dc.identifier.citedreferenceHutchinson, G. E. ( 1957 ). Concluding remarks. Cold Spring Harbor Quantitative Biology, 22, 415 â 427.
dc.identifier.citedreferenceJankowski, J. E., Londoño, G. A., Robinson, S. K., & Chappell, M. A. ( 2013 ). Exploring the role of physiology and biotic interactions in determining elevational ranges of tropical animals. Ecography, 36, 001 â 012.
dc.identifier.citedreferenceJanzen, D. H. ( 1967 ). Why mountain passes are higher in the tropics. American Naturalist, 101, 233 â 249.
dc.identifier.citedreferenceKellermann, V., Loeschcke, V., Hoffmann, A. A., Kristensen, T. N., Flojgaard, C., David, J. R., â ¦ Overgaard, J. ( 2012 ). Phylogenetic constraints in key functional traits behind speciesâ climate niches: Patterns of desiccation and cold resistance across 95 Drosophila species. Evolution, 66, 3377 â 3389.
dc.identifier.citedreferenceKellermann, V., Overgaard, J., Hoffmann, A. A., Flojgaard, C., Svenning, J., & Loeschcke, V. ( 2012 ). Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proceedings of the National Academy of Sciences of the United States of America, 109, 16228 â 16233.
dc.identifier.citedreferenceKozak, K. H., & Wiens, J. J. ( 2007 ). Climatic zonation drives latitudinal variation in speciation mechanisms. Proceedings of the Royal Society B: Biological Sciences, 274, 2995 â 3003.
dc.identifier.citedreferenceLanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. ( 2012 ). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695 â 1701.
dc.identifier.citedreferenceLaurance, W. F., et al. [+53 coâ authors]. ( 2011 ). Global warming, elevational ranges, and the vulnerability of tropical biota. Biological Conservation, 144, 548 â 557.
dc.identifier.citedreferenceLehr, E., Fritzsch, G., & Müller, A. ( 2005 ). Analysis of Andes frogs ( Phrynopus, Leptodactylidae, Anura) phylogeny based on 12S and 16S mitochondrial rDNA sequences. Zoologica Scripta, 34, 593 â 603.
dc.identifier.citedreferenceLomolino, M. V. ( 2001 ). Elevation gradients of speciesâ density: Historical and prospective views. Global Ecology and Biogeography, 10, 3 â 13.
dc.identifier.citedreferenceLosos, J. B. ( 2008 ). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995 â 1003.
dc.identifier.citedreferenceMacArthur, R. H. ( 1972 ). Geographical ecology: Patterns in the distribution of species. Princeton, New Jersey: Princeton University Press.
dc.identifier.citedreferencevon May, R., & Donnelly, M. A. ( 2009 ). Do trails affect relative abundance estimates of rainforest frogs and lizards? Austral Ecology, 34 ( 6 ), 613 â 620.
dc.identifier.citedreferencevon May, R., Jacobs, J. M., Santaâ Cruz, R., Valdivia, J., Huamán, J., & Donnelly, M. A. ( 2010 ). Amphibian community structure as a function of forest type in Amazonian Peru. Journal of Tropical Ecology, 26, 509 â 519.
dc.identifier.citedreferencevon May, R., Siuâ Ting, K., Jacobs, J. M., Medinaâ Müller, M., Gagliardi, G., Rodríguez, L. O., & Donnelly, M. A. ( 2009 ). Species diversity and conservation status of amphibians in Madre de Dios, Peru. Herpetological Conservation and Biology, 4, 14 â 29.
dc.identifier.citedreferenceMcCain, C. M., & Colwell, R. K. ( 2011 ). Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecology Letters, 14, 1236 â 1245.
dc.identifier.citedreferenceMoritz, C., Patton, J. L., Schneider, C. J., & Smith, T. B. ( 2000 ). Diversification of rainforest faunas: An integrated molecular approach. Annual Review of Ecology and Systematics, 31, 533 â 563.
dc.identifier.citedreferenceMoritz, C., & Agudo, R. ( 2013 ). The future of species under climate change: Resilience or decline? Science, 341, 504 â 508.
dc.identifier.citedreferenceMuñoz, M. M., Langham, G. M., Brandley, M. C., Rosauer, D. F., Williams, S. E., & Moritz, C. ( 2016 ). Basking behavior predicts the evolution of heat tolerance in Australian rainforest lizards. Evolution, 70, 2537 â 2549.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.