Show simple item record

Identification of Functional and Expression Polymorphisms Associated With Risk for Antineutrophil Cytoplasmic Autoantibodyâ Associated Vasculitis

dc.contributor.authorMerkel, Peter A.
dc.contributor.authorXie, Gang
dc.contributor.authorMonach, Paul A.
dc.contributor.authorJi, Xuemei
dc.contributor.authorCiavatta, Dominic J.
dc.contributor.authorByun, Jinyoung
dc.contributor.authorPinder, Benjamin D.
dc.contributor.authorZhao, Ai
dc.contributor.authorZhang, Jinyi
dc.contributor.authorTadesse, Yohannes
dc.contributor.authorQian, David
dc.contributor.authorWeirauch, Matthew
dc.contributor.authorNair, Rajan
dc.contributor.authorTsoi, Alex
dc.contributor.authorPagnoux, Christian
dc.contributor.authorCarette, Simon
dc.contributor.authorChung, Sharon
dc.contributor.authorCuthbertson, David
dc.contributor.authorDavis, John C.
dc.contributor.authorDellaripa, Paul F.
dc.contributor.authorForbess, Lindsy
dc.contributor.authorGewurz‐singer, Ora
dc.contributor.authorHoffman, Gary S.
dc.contributor.authorKhalidi, Nader
dc.contributor.authorKoening, Curry
dc.contributor.authorLangford, Carol A.
dc.contributor.authorMahr, Alfred D.
dc.contributor.authorMcAlear, Carol
dc.contributor.authorMoreland, Larry
dc.contributor.authorSeo, E. Philip
dc.contributor.authorSpecks, Ulrich
dc.contributor.authorSpiera, Robert F.
dc.contributor.authorSreih, Antoine
dc.contributor.authorSt.Clair, E. William
dc.contributor.authorStone, John H.
dc.contributor.authorYtterberg, Steven R.
dc.contributor.authorElder, James T.
dc.contributor.authorQu, Jia
dc.contributor.authorOchi, Toshiki
dc.contributor.authorHirano, Naoto
dc.contributor.authorEdberg, Jeffrey C.
dc.contributor.authorFalk, Ronald J.
dc.contributor.authorAmos, Christopher I.
dc.contributor.authorSiminovitch, Katherine A.
dc.date.accessioned2017-05-10T17:48:38Z
dc.date.available2018-07-09T17:42:24Zen
dc.date.issued2017-05
dc.identifier.citationMerkel, Peter A.; Xie, Gang; Monach, Paul A.; Ji, Xuemei; Ciavatta, Dominic J.; Byun, Jinyoung; Pinder, Benjamin D.; Zhao, Ai; Zhang, Jinyi; Tadesse, Yohannes; Qian, David; Weirauch, Matthew; Nair, Rajan; Tsoi, Alex; Pagnoux, Christian; Carette, Simon; Chung, Sharon; Cuthbertson, David; Davis, John C.; Dellaripa, Paul F.; Forbess, Lindsy; Gewurz‐singer, Ora ; Hoffman, Gary S.; Khalidi, Nader; Koening, Curry; Langford, Carol A.; Mahr, Alfred D.; McAlear, Carol; Moreland, Larry; Seo, E. Philip; Specks, Ulrich; Spiera, Robert F.; Sreih, Antoine; St.Clair, E. William; Stone, John H.; Ytterberg, Steven R.; Elder, James T.; Qu, Jia; Ochi, Toshiki; Hirano, Naoto; Edberg, Jeffrey C.; Falk, Ronald J.; Amos, Christopher I.; Siminovitch, Katherine A. (2017). "Identification of Functional and Expression Polymorphisms Associated With Risk for Antineutrophil Cytoplasmic Autoantibodyâ Associated Vasculitis." Arthritis & Rheumatology 69(5): 1054-1066.
dc.identifier.issn2326-5191
dc.identifier.issn2326-5205
dc.identifier.urihttps://hdl.handle.net/2027.42/136726
dc.publisherWiley Periodicals, Inc.
dc.publisherChapman and Hall/CRC
dc.titleIdentification of Functional and Expression Polymorphisms Associated With Risk for Antineutrophil Cytoplasmic Autoantibodyâ Associated Vasculitis
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelRheumatology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136726/1/art40034_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136726/2/art40034-sup-0002-suppinfo02.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136726/3/art40034-sup-0001-suppinfo01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136726/4/art40034.pdf
dc.identifier.doi10.1002/art.40034
dc.identifier.sourceArthritis & Rheumatology
dc.identifier.citedreferenceHoffmann TJ, Zhan Y, Kvale MN, Hesselson SE, Gollub J, Iribarren C, et al. Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm. Genomics 2011; 98: 422 â 30.
dc.identifier.citedreferenceKelley JM, Monach PA, Ji C, Zhou Y, Wu J, Tanaka S, et al. IgA and IgG antineutrophil cytoplasmic antibody engagement of Fc receptor genetic variants influences granulomatosis with polyangiitis. Proc Natl Acad Sci U S A 2011; 108: 20736 â 41.
dc.identifier.citedreferenceCiavatta DJ, Yang J, Preston GA, Badhwar AK, Xiao H, Hewins P, et al. Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis. J Clin Invest 2010; 120: 3209 â 19.
dc.identifier.citedreferenceDuranton J, Bieth JG. Inhibition of proteinase 3 by α1â antitrypsin in vitro predicts very fast inhibition in vivo. Am J Respir Cell Mol Biol 2003; 29: 57 â 61.
dc.identifier.citedreferenceChen GB, Lee SH, Brion MJ, Montgomery GW, Wray NR, Radfordâ Smith GL, et al. Estimation and partitioning of (co)heritability of inflammatory bowel disease from GWAS and immunochip data. Hum Mol Genet 2014; 23: 4710 â 20.
dc.identifier.citedreferenceCarmona FD, Mackie SL, Martin JE, Taylor JC, Vaglio A, Eyre S, et al. A largeâ scale genetic analysis reveals a strong contribution of the HLA class II region to giant cell arteritis susceptibility. Am J Hum Genet 2015; 96: 565 â 80.
dc.identifier.citedreferenceCho JH, Feldman M. Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies. Nat Med 2015; 21: 730 â 8.
dc.identifier.citedreferenceRarok AA, Stegeman CA, Limburg PC, Kallenberg CG. Neutrophil membrane expression of proteinase 3 (PR3) is related to relapse in PR3â ANCAâ associated vasculitis. J Am Soc Nephrol 2002; 13: 2232 â 8.
dc.identifier.citedreferenceGencik M, Meller S, Borgmann S, Fricke H. Proteinase 3 gene polymorphisms and Wegener’s granulomatosis. Kidney Int 2000; 58: 2473 â 7.
dc.identifier.citedreferenceMahr AD, Edberg JC, Stone JH, Hoffman GS, St.Clair EW, Specks U, et al. Alpha 1 â antitrypsin deficiencyâ related alleles Z and S and the risk of Wegener’s granulomatosis. Arthritis Rheum 2010; 62: 3760 â 7.
dc.identifier.citedreferenceLivak KJ, Schmittgen TD. Analysis of relative gene expression data using realâ time quantitative PCR and the 2 â Î Î C t method. Methods 2001; 25: 402 â 8.
dc.identifier.citedreferenceXia K, Shabalin AA, Huang S, Madar V, Zhou YH, Wang W, et al. seeQTL: a searchable database for human eQTLs. Bioinformatics 2012; 28: 451 â 2.
dc.identifier.citedreferenceYang TP, Beazley C, Montgomery SB, Dimas AS, Gutierrezâ Arcelus M, Stranger BE, et al. Genevar: a database and Java application for the analysis and visualization of SNPâ gene associations in eQTL studies. Bioinformatics 2010; 26: 2474 â 6.
dc.identifier.citedreferenceFarh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 2015; 518: 337 â 43.
dc.identifier.citedreferenceBreiman L, Friedman J, Olshen RA, Stone CJ. Classification and Regression Trees. Belmont, California: Chapman and Hall/CRC; 1984.
dc.identifier.citedreferenceHowie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genomeâ wide association studies. PLoS Genet 2009; 5: e1000529.
dc.identifier.citedreferenceLee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genomeâ wide association studies. Am J Hum Genet 2011; 88: 294 â 305.
dc.identifier.citedreferenceWiller CJ, Li Y, Abecasis GR. METAL: fast and efficient metaâ analysis of genomewide association scans. Bioinformatics 2010; 26: 2190 â 1.
dc.identifier.citedreferencePurcell S, Neale B, Toddâ Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for wholeâ genome association and populationâ based linkage analyses. Am J Hum Genet 2007; 81: 559 â 75.
dc.identifier.citedreferenceXie G, Roshandel D, Sherva R, Monach PA, Lu EY, Kung T, et al. Association of granulomatosis with polyangiitis (Wegener’s) with HLAâ DPB1*04 and SEMA6A gene variants: evidence from genomeâ wide analysis. Arthritis Rheum 2013; 65: 2457 â 68.
dc.identifier.citedreferenceLyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DR, et al. Genetically distinct subsets within ANCAâ associated vasculitis. N Engl J Med 2012; 367: 214 â 23.
dc.identifier.citedreferenceFries JF, Hunder GG, Bloch DA, Michel BA, Arend WP, Calabrese LH, et al. The American College of Rheumatology 1990 criteria for the classification of vasculitis: summary. Arthritis Rheum 1990; 33: 1135 â 6.
dc.identifier.citedreferenceBanda Y, Kvale MN, Hoffmann TJ, Hesselson SE, Ranatunga D, Tang H, et al. Characterizing race/ethnicity and genetic ancestry for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Genetics 2015; 200: 1285 â 95.
dc.identifier.citedreferenceYang J, Bautz DJ, Lionaki S, Hogan SL, Chin H, Tisch RM, et al. ANCA patients have T cells responsive to complementary PRâ 3 antigen. Kidney Int 2008; 74: 1159 â 69.
dc.identifier.citedreferenceCsernok E, Ai M, Gross WL, Wicklein D, Petersen A, Lindner B, et al. Wegener autoantigen induces maturation of dendritic cells and licenses them for Th1 priming via the proteaseâ activated receptorâ 2 pathway. Blood 2006; 107: 4440 â 8.
dc.identifier.citedreferencePendergraft WF III, Preston GA, Shah RR, Tropsha A, Carter CW Jr, Jennette JC, et al. Autoimmunity is triggered by cPRâ 3(105â 201), a protein complementary to human autoantigen proteinaseâ 3. Nat Med 2004; 10: 72 â 9.
dc.identifier.citedreferencePopa ER, Franssen CF, Limburg PC, Huitema MG, Kallenberg CG, Tervaert JW. In vitro cytokine production and proliferation of T cells from patients with antiâ proteinase 3â and antimyeloperoxidaseâ associated vasculitis, in response to proteinase 3 and myeloperoxidase. Arthritis Rheum 2002; 46: 1894 â 904.
dc.identifier.citedreferenceWinek J, Mueller A, Csernok E, Gross WL, Lamprecht P. Frequency of proteinase 3 (PR3)â specific autoreactive T cells determined by cytokine flow cytometry in Wegener’s granulomatosis. J Autoimmun 2004; 22: 79 â 85.
dc.identifier.citedreferenceVan der Geld YM, Huitema MG, Franssen CF, van der Zee R, Limburg PC, Kallenberg CG. In vitro T lymphocyte responses to proteinase 3 (PR3) and linear peptides of PR3 in patients with Wegener’s granulomatosis (WG). Clin Exp Immunol 2000; 122: 504 â 13.
dc.identifier.citedreferencePetersdorf EW, Malkki M, O’hUigin C, Carrington M, Gooley T, Haagenson MD, et al. High HLAâ DP expression and graftâ versusâ host disease. N Engl J Med 2015; 373: 599 â 609.
dc.identifier.citedreferenceThomas R, Thio CL, Apps R, Qi Y, Gao X, Marti D, et al. A novel variant marking HLAâ DP expression levels predicts recovery from hepatitis B virus infection. J Virol 2012; 86: 6979 â 85.
dc.identifier.citedreferenceSilveira LJ, McCanlies EC, Fingerlin TE, van Dyke MV, Mroz MM, Strand M, et al. Chronic beryllium disease, HLAâ DPB1, and the DP peptide binding groove. J Immunol 2012; 189: 4014 â 23.
dc.identifier.citedreferenceDoytchinova IA, Flower DR. In silico identification of supertypes for class II MHCs. J Immunol 2005; 174: 7085 â 95.
dc.identifier.citedreferenceYang JJ, Pendergraft WF, Alcorta DA, Nachman PH, Hogan SL, Thomas RP, et al. Circumvention of normal constraints on granule protein gene expression in peripheral blood neutrophils and monocytes of patients with antineutrophil cytoplasmic autoantibodyâ associated glomerulonephritis. J Am Soc Nephrol 2004; 15: 2103 â 14.
dc.identifier.citedreferenceThe GTEx Consortium. The Genotypeâ Tissue Expression (GTEx) project. Nat Genet 2013; 45: 580 â 5.
dc.identifier.citedreferenceZhang J, Zahir N, Jiang Q, Miliotis H, Heyraud S, Meng X, et al. The autoimmune diseaseâ associated PTPN22 variant promotes calpainâ mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat Genet 2011; 43: 902 â 7.
dc.identifier.citedreferenceDiaz G, Amicosante M, Jaraquemada D, Butler RH, Guillen MV, Sanchez M, et al. Functional analysis of HLAâ DP polymorphism: a crucial role for DPβ residues 9, 11, 35, 55, 56, 69 and 84â 87 in T cell allorecognition and peptide binding. Int Immunol 2003; 15: 565 â 76.
dc.identifier.citedreferenceChung SA, Xie G, Roshandel D, Sherva R, Edberg JC, Kravitz M, et al. Metaâ analysis of genetic polymorphisms in granulomatosis with polyangiitis (Wegener’s) reveals shared susceptibility loci with rheumatoid arthritis. Arthritis Rheum 2012; 64: 3463 â 71.
dc.identifier.citedreferenceJagiello P, Aries P, Arning L, Wagenleiter SE, Csernok E, Hellmich B, et al. The PTPN22 620W allele is a risk factor for Wegener’s granulomatosis. Arthritis Rheum 2005; 52: 4039 â 43.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.