Show simple item record

Photochemical escape of oxygen from Mars: First results from MAVEN in situ data

dc.contributor.authorLillis, Robert J.
dc.contributor.authorDeighan, Justin
dc.contributor.authorFox, Jane L.
dc.contributor.authorBougher, Stephen W.
dc.contributor.authorLee, Yuni
dc.contributor.authorCombi, Michael R.
dc.contributor.authorCravens, Thomas E.
dc.contributor.authorRahmati, Ali
dc.contributor.authorMahaffy, Paul R.
dc.contributor.authorBenna, Mehdi
dc.contributor.authorElrod, Meredith K.
dc.contributor.authorMcFadden, James P.
dc.contributor.authorErgun, Robert. E.
dc.contributor.authorAndersson, Laila
dc.contributor.authorFowler, Christopher M.
dc.contributor.authorJakosky, Bruce M.
dc.contributor.authorThiemann, Ed
dc.contributor.authorEparvier, Frank
dc.contributor.authorHalekas, Jasper S.
dc.contributor.authorLeblanc, François
dc.contributor.authorChaufray, Jean‐yves
dc.date.accessioned2017-05-10T17:48:52Z
dc.date.available2018-05-04T20:56:59Zen
dc.date.issued2017-03
dc.identifier.citationLillis, Robert J.; Deighan, Justin; Fox, Jane L.; Bougher, Stephen W.; Lee, Yuni; Combi, Michael R.; Cravens, Thomas E.; Rahmati, Ali; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; McFadden, James P.; Ergun, Robert. E.; Andersson, Laila; Fowler, Christopher M.; Jakosky, Bruce M.; Thiemann, Ed; Eparvier, Frank; Halekas, Jasper S.; Leblanc, François ; Chaufray, Jean‐yves (2017). "Photochemical escape of oxygen from Mars: First results from MAVEN in situ data." Journal of Geophysical Research: Space Physics 122(3): 3815-3836.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/136737
dc.description.abstractPhotochemical escape of atomic oxygen is thought to be one of the dominant channels for Martian atmospheric loss today and played a potentially major role in climate evolution. Mars Atmosphere and Volatile Evolution Mission (MAVEN) is the first mission capable of measuring, in situ, the relevant quantities necessary to calculate photochemical escape fluxes. We utilize 18â months of data from three MAVEN instruments: Langmuir Probe and Waves, Neutral Gas and Ion Mass Spectrometer, and SupraThermal And Thermal Ion Composition. From these data, we calculate altitude profiles of the production rate of hot oxygen atoms from the dissociative recombination of O2+ and the probability that such atoms will escape the Mars atmosphere. From this, we determine escape fluxes for 815 periapsis passes. Derived average dayside hot O escape rates range from 1.2 to 5.5â à â 1025â sâ 1, depending on season and EUV flux, consistent with several preâ MAVEN predictions and in broad agreement with estimates made with other MAVEN measurements. Hot O escape fluxes do not vary significantly with dayside solar zenith angle or crustal magnetic field strength but depend on CO2 photoionization frequency with a power law whose exponent is 2.6â ±â 0.6, an unexpectedly high value which may be partially due to seasonal and geographic sampling. From this dependence and historical EUV measurements over 70â years, we estimate a modernâ era average escape rate of 4.3â à â 1025â sâ 1. Extrapolating this dependence to early solar system, EUV conditions gives total losses of 13, 49, 189, and 483â mbar of oxygen over 1â 3 and 3.5â Gyr, respectively, with uncertainties significantly increasing with time in the past.Key PointsPhotochemical O escape fluxes from dissociative recombination of O2+ are calculated from MAVEN in situ dataEscape rates of 1.2 to 5.5â à â 1025â sâ 1 are derived and depend on season, solar zenith angle, and EUV flux, consistent with previous modelsWe find a power law exponent of 2.6 for the EUV dependence of escape rate, implying 100â s of mbar of oxygen loss over 3.5â Gyr
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge Univ. Press
dc.subject.otheratmosphere
dc.subject.otheroxygen
dc.subject.otherdissociative
dc.subject.otherphotochemical
dc.subject.otherescape
dc.subject.otherMars
dc.titlePhotochemical escape of oxygen from Mars: First results from MAVEN in situ data
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136737/1/jgra53362.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136737/2/jgra53362_am.pdf
dc.identifier.doi10.1002/2016JA023525
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceMahaffy, P. R., M. Benna, M. Elrod, R. V. Yelle, S. W. Bougher, S. W. Stone, and B. M. Jakosky ( 2015 ), Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation, Geophys. Res. Lett., 42, 8951 â 8957, doi: 10.1002/2015GL065329.
dc.identifier.citedreferenceHinteregger, H. E. ( 1981 ), Representations of solar EUV fluxes for aeronomical applications, Adv. Space Res., 1, 39 â 52, doi: 10.1016/0273-1177(81)90416-6.
dc.identifier.citedreferenceHodges, R. R. ( 2002 ), The rate of loss of water from Mars, Geophys. Res. Lett., 29 ( 3 ), 1038, doi: 10.1029/2001GL013853.
dc.identifier.citedreferenceHuebner, W. F., and J. Mukherjee ( 2015 ), Photoionization and photodissociation rates in solar and blackbody radiation fields, Planet. Space Sci., 106, 11 â 45, doi: 10.1016/j.pss.2014.11.022.
dc.identifier.citedreferenceJakosky, B. M., et al. ( 2014 ), The Mars Atmosphere and Volatile Evolution (MAVEN) mission, Space Sci. Rev., doi: 10.1007/s11214-015-0139-x.
dc.identifier.citedreferenceJohnstone, C. P., M. Güdel, I. Brott, and T. Lüftinger ( 2015 ), Stellar winds on the mainâ sequence. II. The evolution of rotation and winds, Astron. Astrophys., 577, 22, doi: 10.1051/0004-6361/201424550.
dc.identifier.citedreferenceKeating, G. M., et al. ( 1998 ), The structure of the upper atmosphere of Mars: In situ accelerometer measurements from Mars global surveyor, Science, 279 ( 5357 ), 1672 â 1676, doi: 10.1126/science.279.5357.1672.
dc.identifier.citedreferenceKharchenko, V., A. Dalgarno, B. Zygelman, and J. H. Yee ( 2000 ), Energy transfer in collisions of oxygen atoms in the terrestrial atmosphere, J. Geophys. Res., 105, 24,899 â 24,906, doi: 10.1029/2000JA000085.
dc.identifier.citedreferenceKim, J., A. F. Nagy, J. L. Fox, and T. E. Cravens ( 1998 ), Solar cycle variability of hot oxygen atoms at Mars, J. Geophys. Res., 103, 29,339 â 29,342, doi: 10.1029/98JA02727.
dc.identifier.citedreferenceKrestyanikova, M. A., and V. I. Shematovich ( 2005 ), Stochastic models of hot planetary and satellite coronas: A photochemical source of hot oxygen in the upper atmosphere of Mars, Sol. Syst. Res., 39 ( 1 ), 22 â 32, doi: 10.1007/s11208-005-0002-9.
dc.identifier.citedreferenceLammer, H., J. F. Kasting, E. Chassefiere, R. E. Johnson, Y. N. Kulikov, and F. Tian ( 2008 ), Atmospheric escape and evolution of terrestrial planets and satellites, Space Sci. Rev., 139 ( 1 ), 399 â 436, doi: 10.1007/978-0-387-87825-6_11.
dc.identifier.citedreferenceLarson, D., et al. ( 2015 ), The MAVEN solar energetic particle investigation, Space Sci. Rev., 195, 153 â 172, doi: 10.1007/s11214-015-0218-z.
dc.identifier.citedreferenceLee, Y., M. R. Combi, V. Tenishev, S. W. Bougher, J. Deighan, N. M. Schneider, W. E. McClintock, and B. M. Jakosky ( 2015a ), A comparison of 3â D model predictions of Mars’ oxygen corona with early MAVEN IUVS observations, Geophys. Res. Lett., 42, 9015 â 9022, doi: 10.1002/2015GL065291.
dc.identifier.citedreferenceLee, Y., M. R. Combi, V. Tenishev, S. W. Bougher, and R. J. Lillis ( 2015b ), Hot oxygen corona at Mars and the photochemical escape of oxygen: Improved description of the thermosphere, ionosphere, and exosphere, J. Geophys. Res. Planets, 120, 1880 â 1892, doi: 10.1002/2015JE004890.
dc.identifier.citedreferenceLillis, R. J., and D. A. Brain ( 2013 ), Nightside electron precipitation at Mars: Geographic variability and dependence on solar wind conditions, J. Geophys. Res. Space Physics, 118, 3546 â 3556, doi: 10.1002/Jgra.50171.
dc.identifier.citedreferenceLillis, R. J., D. L. Mitchell, R. P. Lin, and M. H. Acuna ( 2008 ), Electron reflectometry in the Martian atmosphere, Icarus, 194 ( 2 ), 544 â 561, doi: 10.1016/j.icarus.2007.09.030.
dc.identifier.citedreferenceLillis, R. J., D. A. Brain, S. L. England, P. Withers, M. O. Fillingim, and A. Safaeinili ( 2010 ), Total electron content in the Mars ionosphere: Temporal studies and dependence on solar EUV flux, J. Geophys. Res., 115, A11314, doi: 10.1029/2010JA015698.
dc.identifier.citedreferenceLillis, R. J., M. O. Fillingim, and D. A. Brain ( 2011 ), Threeâ dimensional structure of the Martian nightside ionosphere: Predicted rates of impact ionization from Mars Global Surveyor Magnetometer and Electron Reflectometer measurements of precipitating electrons, J. Geophys. Res., 116, A12317, doi: 10.1029/2011JA016982.
dc.identifier.citedreferenceLillis, R. J., et al. ( 2015 ), Characterizing atmospheric escape from mars today and through time, with MAVEN, Space Sci. Rev., 195, 357 â 422, doi: 10.1007/s11214-015-0165-8.
dc.identifier.citedreferenceMahaffy, P. R., et al. ( 2014 ), The Neutral Gas and Ion Mass Spectrometer on the Mars atmosphere and volatile evolution mission, Space Sci. Rev., 195 ( 1 ), 49 â 73, doi: 10.1007/s11214-014-0091-1.
dc.identifier.citedreferenceMcClintock, W., N. M. Schneider, G. M. Holsclaw, J. Clarke, A. Hoskins, I. Stewart, F. Montmessin, and R. Yelle ( 2015 ), The imaging ultraviolet spectrograph for the MAVEN mission, Space Sci. Rev., 195 ( 1â 4 ), 75 â 124, doi: 10.1007/s11214-014-0098-7.
dc.identifier.citedreferenceMcFadden, J., et al. ( 2015 ), The MAVEN Suprathermal and thermal Ion Composition (STATIC) instrument, Space Sci. Rev., doi: 10.1007/s11214-015-0175-6.
dc.identifier.citedreferenceMedvedev, A. S., and E. Yigit ( 2012 ), Thermal effects of internal gravity waves in the Martian upper atmosphere, Geophys. Res. Lett., 39, L05201, doi: 10.1029/2012GL050852.
dc.identifier.citedreferenceMorgan, D. D., D. A. Gurnett, D. L. Kirchner, J. L. Fox, E. Nielsen, and J. J. Plaut ( 2008 ), Variation of the Martian ionospheric electron density from Mars Express radar soundings, J. Geophys. Res., 113, A09303, doi: 10.1029/2008JA013313.
dc.identifier.citedreferenceMorschhauser, A., V. Lesur, and M. Grott ( 2014 ), A spherical harmonic model of the lithospheric magnetic field of Mars, J. Geophys. Res. Planets, 119, 1162 â 1188, doi: 10.1002/2013JE004555.
dc.identifier.citedreferenceNagy, A. F., M. W. Liemohn, J. L. Fox, and J. Kim ( 2001 ), Hot carbon densities in the exosphere of Mars, J. Geophys. Res., 106, 21,565 â 21,568, doi: 10.1029/2001JA000007.
dc.identifier.citedreferenceNÄ mec, F., D. D. Morgan, D. A. Gurnett, and D. A. Brain ( 2011 ), Areas of enhanced ionization in the deep nightside ionosphere of Mars, J. Geophys. Res., 116, E06006m, doi: 10.1029/2011JE003804.
dc.identifier.citedreferenceNier, A. O., W. B. Hanson, A. Seiff, M. B. Mcelroy, N. W. Spencer, R. J. Duckett, T. C. D. Knight, and W. S. Cook ( 1976 ), Composition and structure of martian atmosphereâ Preliminary results from Vikingâ 1, Science, 193 ( 4255 ), 786 â 788, doi: 10.1126/science.193.4255.786.
dc.identifier.citedreferencePetrignani, A., F. Hellberg, R. D. Thomas, M. Larsson, P. C. Cosby, and W. J. van der Zande ( 2005 ), Electron energyâ dependent product state distributions in the dissociative recombination of O 2 +, J. Chem. Phys., 122 ( 23 ), 234311, doi: 10.1063/1.1937388.
dc.identifier.citedreferenceRahmati, A., D. E. Larson, T. E. Cravens, R. J. Lillis, P. A. Dunn, J. S. Halekas, J. E. Connerney, F. G. Eparvier, E. M. B. Thiemann, and B. M. Jakosky ( 2015 ), MAVEN insights into oxygen pickup ions at Mars, Geophys. Res. Lett., 42, 8870 â 8876, doi: 10.1002/2015GL065262.
dc.identifier.citedreferenceRahmati, A., et al. ( 2017 ), MAVEN measured oxygen and hydrogen pickup ions: Probing the Martian exosphere and neutral escape, J. Geophys. Res. Space Physics, 122, doi: 10.1002/2016JA023371.
dc.identifier.citedreferenceRibas, I., E. F. Guinan, M. Güdel, and M. Audard ( 2005 ), Evolution of the solar activity over time and effects on planetary atmospheres. I. Highâ energy irradiances (1â 1700â à ), Astrophys. J., 622 ( 1 ), 680, doi: 10.1086/427977.
dc.identifier.citedreferenceRiousset, J. A., C. S. Paty, R. J. Lillis, M. O. Fillingim, S. L. England, P. G. Withers, and J. P. M. Hale ( 2013 ), Threeâ dimensional multifluid modeling of atmospheric electrodynamics in Mars’ dynamo region, J. Geophys. Res. Space Physics, 118, 3647 â 3659, doi: 10.1002/Jgra.50328.
dc.identifier.citedreferenceSchunk, R. W., and A. Nagy ( 2000 ), Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge Univ. Press, New York.
dc.identifier.citedreferenceThiemann, E. M. B., P. C. Chamberlin, F. G. Eparvier, B. Templeman, T. N. Woods, S. W. Bougher, and B. M. Jakosky ( 2017 ), The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results, J. Geophys. Res. Space Physics, 122, doi: 10.1002/2016JA023512.
dc.identifier.citedreferenceTu, L., C. P. Johnstone, M. Güdel, and H. Lammer ( 2015 ), The extreme ultraviolet and Xâ ray Sun in rime: Highâ energy evolutionary tracks of a solarâ like star, A&A, 577, doi: 10.1051/0004-6361/201526146.
dc.identifier.citedreferenceValeille, A., M. R. Combi, S. W. Bougher, V. Tenishev, and A. F. Nagy ( 2009a ), Threeâ dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history, J. Geophys. Res., 114, E11006, doi: 10.1029/2009JE003389.
dc.identifier.citedreferenceValeille, A., V. Tenishev, S. W. Bougher, M. R. Combi, and A. F. Nagy ( 2009b ), Threeâ dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions, J. Geophys. Res., 114, E11005, doi: 10.1029/2009JE003388.
dc.identifier.citedreferenceValeille, A., M. R. Combi, V. Tenishev, S. W. Bougher, and A. F. Nagy ( 2010 ), A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions, Icarus, 206 ( 1 ), 18 â 27, doi: 10.1016/j.icarus.2008.08.018.
dc.identifier.citedreferenceWithers, P. ( 2009 ), A review of observed variability in the dayside ionosphere of Mars, Adv. Space Res., 44 ( 3 ), 277 â 307, doi: 10.1016/j.asr.2009.04.027.
dc.identifier.citedreferenceWright, C. J. ( 2012 ), A oneâ year seasonal analysis of martian gravity waves using MCS data, Icarus, 219 ( 1 ), 274 â 282, doi: 10.1016/j.icarus.2012.03.004.
dc.identifier.citedreferenceZhao, J., and F. Tian ( 2015 ), Photochemical escape of oxygen from early Mars, Icarus, 250, 477 â 481, doi: 10.1016/j.icarus.2014.12.032.
dc.identifier.citedreferenceAndersson, L., R. E. Ergun, G. Delory, A. I. Eriksson, J. Westfall, H. Reed, J. F. McCauly, D. J. Summers, and D. Meyers ( 2015 ), The langmuir probe and waves experiment for MAVEN, Space Sci. Rev., 195, 173 â 198.
dc.identifier.citedreferenceAndrews, D. J., L. Andersson, G. T. Delory, R. E. Ergun, A. I. Eriksson, C. M. Fowler, T. McEnulty, M. W. Morooka, T. Weber, and B. M. Jakosky ( 2015 ), Ionospheric plasma density variations observed at Mars by MAVEN/LPW, Geophys. Res. Lett., 42, 8862 â 8869, doi: 10.1002/2015GL065241.
dc.identifier.citedreferenceAyres, T. R. ( 1997 ), Evolution of the solar ionizing flux, J. Geophys. Res., 102, 1641 â 1651, doi: 10.1029/96JE03306.
dc.identifier.citedreferenceBalakrishnan, N., V. Kharchenko, and A. Dalgarno ( 1998 ), Quantum mechanical and semiclassical studies of Nâ +â N 2 collisions and their application to thermalization of fast N atoms, J. Chem. Phys., 108, 943, doi: 10.1063/1.475458.
dc.identifier.citedreferenceBenna, M., P. R. Mahaffy, J. M. Grebowsky, J. L. Fox, R. V. Yelle, and B. M. Jakosky ( 2015 ), First measurements of composition and dynamics of the Martian ionosphere by MAVEN’s Neutral Gas and Ion Mass Spectrometer, Geophys. Res. Lett., 42, 8958 â 8965, doi: 10.1002/2015GL066146.
dc.identifier.citedreferenceBougher, S. W., S. Engel, R. G. Roble, and B. Foster ( 1999 ), Comparative terrestrial planet thermospheres 2. Solar cycle variation of global structure and winds at equinox, J. Geophys. Res., 104, 16,591 â 16,611, doi: 10.1029/1998JE001019.
dc.identifier.citedreferenceBougher, S. W., S. Engel, R. G. Roble, and B. Foster ( 2000 ), Comparative terrestrial planet thermospheres 3. Solar cycle variation of global structure and winds at solstices, J. Geophys. Res., 105, 17,669 â 17,692, doi: 10.1029/1999JE001232.
dc.identifier.citedreferenceBrain, D. A., S. Barabash, S. Bougher, F. Duru, B. Jakosky, and R. Modolo ( 2017 ), Solar wind interaction and atmospheric escape, in The Mars 6 Atmosphere, edited by B. Haberle et al., Cambridge Univ. Press, Cambridge, doi: 10.1017/9781139060172.
dc.identifier.citedreferenceChaufray, J. Y., R. Modolo, F. Leblanc, G. Chanteur, R. E. Johnson, and J. G. Luhmann ( 2007 ), Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space, J. Geophys. Res., 112, E09009, doi: 10.1029/2007JE002915.
dc.identifier.citedreferenceCipriani, F., F. Leblanc, and J. J. Berthelier ( 2007 ), Martian corona: Nonthermal sources of hot heavy species, J. Geophys. Res., 112, E07001, doi: 10.1029/2006JE002818.
dc.identifier.citedreferenceCravens, T. E., et al. ( 2016 ), Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance, J. Geophys. Res. Space Physics, 122, 1102 â 1116, doi: 10.1002/2016JA023461.
dc.identifier.citedreferenceDeighan, J., et al. ( 2015 ), MAVEN IUVS observation of the hot oxygen corona at Mars, Geophys. Res. Lett., 42, 9009 â 9014, doi: 10.1002/2015GL065487.
dc.identifier.citedreferenceEngland, S. L., et al. ( 2016 ), Simultaneous observations of atmospheric tides from combined in situ and remote observations at Mars from the MAVEN spacecraft, J. Geophys. Res. Planets, 121, 594 â 607, doi: 10.1002/2016JE004997.
dc.identifier.citedreferenceEparvier, F., P. C. Chamberlin, and T. N. Woods ( 2015 ), The Solar Extreme Ultraviolet Monitor for MAVEN, Space Sci. Rev., 195 ( 1â 4 ), 293 â 301, doi: 10.1007/s11214-015-0195-2.
dc.identifier.citedreferenceErgun, R. E., M. W. Morooka, C. M. Fowler, G. Delory, D. J. Andrews, A. I. Eriksson, T. McEnulty, and B. Jakosky ( 2015 ), Dayside electron temperature and density profiles at Mars: First results from the MAVEN LPW instrument, Geophys. Res. Lett., 42, 8846 â 8853, doi: 10.1002/2015GL065280.
dc.identifier.citedreferenceErgun, R. E., et al. ( 2016 ), Enhanced O 2 + loss at Mars due to an ambipolar electric field from electron heating, J. Geophys. Res. Space Physics, 121, 4668 â 4678, doi: 10.1002/2016JA022349.
dc.identifier.citedreferenceFillingim, M. O., R. J. Lillis, S. L. England, L. M. Peticolas, D. A. Brain, J. S. Halekas, C. Paty, D. Lummerzheim, and S. W. Bougher ( 2012 ), On windâ driven electrojets at magnetic cusps in the nightside ionosphere of Mars, Earth Planets Space, 64 ( 2 ), 93 â 103, doi: 10.5047/eps.2011.04.010.
dc.identifier.citedreferenceFowler, C. M., et al. ( 2015 ), The first in situ electron temperature and density measurements of the Martian nightside ionosphere, Geophys. Res. Lett., 42, 8854 â 8861, doi: 10.1002/2015GL065267.
dc.identifier.citedreferenceFox, J. L., and A. B. HaÄ ( 2009 ), Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method, Icarus, 204 ( 2 ), 527 â 544, doi: 10.1016/j.icarus.2009.07.005.
dc.identifier.citedreferenceFox, J. L., and A. B. Hac ( 2014 ), The escape of O from Mars: Sensitivity to the elastic cross sections, Icarus, 228, 375 â 385, doi: 10.1016/j.icarus.2013.10.014.
dc.identifier.citedreferenceGirazian, Z., and P. Withers ( 2015 ), An empirical model of the extreme ultraviolet solar spectrum as a function of F10.7, J. Geophys. Res. Space Physics, 120, 6779 â 6794, doi: 10.1002/2015JA021436.
dc.identifier.citedreferenceGonzalezâ Galindo, F., J. Y. Chaufray, M. A. Lopezâ Valverde, G. Gilli, F. Forget, F. Leblanc, R. Modolo, S. Hess, and M. Yagi ( 2013 ), Threeâ dimensional Martian ionosphere model: I. The photochemical ionosphere below 180â km, J. Geophys. Res. Planets, 118, 2105 â 2123, doi: 10.1002/Jgre.20150.
dc.identifier.citedreferenceGroller, H., H. Lichtenegger, H. Lammer, and V. I. Shematovich ( 2014 ), Hot oxygen and carbon escape from the martian atmosphere, Planet. Space Sci., 98, 93 â 105, doi: 10.1016/j.pss.2014.01.007.
dc.identifier.citedreferenceHalekas, J. S., E. R. Taylor, G. Dalton, G. Johnson, D. W. Curtis, J. P. McFadden, D. L. Mitchell, R. P. Lin, and B. M. Jakosky ( 2015 ), The MAVEN solar wind ion analyzer, Space Sci. Rev., 195 ( 1 ), 125 â 151, doi: 10.1007/s11214-013-0029-z.
dc.identifier.citedreferenceHanson, W. B., S. Sanatani, and D. Zuccaro ( 1976 ), Retarding potential analyzer measurements from Viking Landers, Trans. AGU, 57 ( 12 ), 966 â 966.
dc.identifier.citedreferenceHanson, W. B., S. Sanatani, and D. R. Zuccaro ( 1977 ), The Martian ionosphere as observed by the Viking retarding potential analyzers, J. Geophys. Res., 82, 4351 â 4363, doi: 10.1029/JS082i028p04351.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.