Show simple item record

Effects of sudden commencement on the ionosphere: PFISR observations and global MHD simulation

dc.contributor.authorZou, Shasha
dc.contributor.authorOzturk, Dogacan
dc.contributor.authorVarney, Roger
dc.contributor.authorReimer, Ashton
dc.date.accessioned2017-05-10T17:48:57Z
dc.date.available2018-05-15T21:02:51Zen
dc.date.issued2017-04-16
dc.identifier.citationZou, Shasha; Ozturk, Dogacan; Varney, Roger; Reimer, Ashton (2017). "Effects of sudden commencement on the ionosphere: PFISR observations and global MHD simulation." Geophysical Research Letters 44(7): 3047-3058.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/136741
dc.description.abstractSudden commencement (SC) induced by solar wind pressure enhancement can produce significant global impact on the coupled magnetosphere‐ionosphere (MI) system, and its effects have been studied extensively using ground magnetometers and coherent scatter radars. However, very limited observations have been reported about the effects of SC on the ionospheric plasma. Here we report detailed Poker Flat Incoherent Scatter Radar (PFISR) observations of the ionospheric response to SC during the 17 March 2015 storm. PFISR observed lifting of the F region ionosphere, transient field‐aligned ion upflow, prompt but short‐lived ion temperature increase, subsequent F region density decrease, and persistent electron temperature increase. A global magnetohydrodynamic (MHD) simulation has been carried out to characterize the SC‐induced current, convection, and magnetic perturbations. Simulated magnetic perturbations at Poker Flat show a satisfactory agreement with observations. The simulation provides a global context for linking localized PFISR observations to large‐scale dynamic processes in the MI system.Key PointsPFISR‐observed ionospheric plasma responses to field‐aligned currents and ionospheric convection vortices formed during sudden commencementResponses include F region plasma lifting, field‐aligned ion upflow, density decrease, short‐lived Ti increase and long‐lasting Te increaseGlobal MHD simulation reproduced the magnetic perturbation on the ground and revealed SC‐related FACs and convection evolutions
dc.publisherAGU
dc.publisherWiley Periodicals, Inc.
dc.subject.otherincoherent scatter radar
dc.subject.otherground magnetic perturbation
dc.subject.othersudden commencement
dc.subject.othermagnetohydrodynamic model
dc.subject.otherfrictional heating
dc.subject.otherion upflow
dc.titleEffects of sudden commencement on the ionosphere: PFISR observations and global MHD simulation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136741/1/grl55728_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136741/2/grl55728.pdf
dc.identifier.doi10.1002/2017GL072678
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSibeck, D. G., N. B. Trivedi, E. Zesta, R. B. Decker, H. J. Singer, A. Szabo, H. Tachihara, and J. Watermann ( 2003 ), Pressure‐pulse interaction with the magnetosphere and ionosphere, J. Geophys. Res., 108 ( A2 ), 1095, doi: 10.1029/2002JA009675.
dc.identifier.citedreferenceRidley, A. J., T. I. Gombosi, and D. L. DeZeeuw ( 2004 ), Ionospheric control of the magnetosphere: Conductance, Ann. Geophys., 22 ( 2 ), 567 – 584, doi: 10.5194/angeo‐22‐567‐2004.
dc.identifier.citedreferenceSamsonov, A. A., D. G. Sibeck, and Y. Yu ( 2010 ), Transient changes in magnetospheric‐ionospheric currents caused by the passage of an interplanetary shock: Northward interplanetary magnetic field case, J. Geophys. Res., 115, A05207, doi: 10.1029/2009JA014751.
dc.identifier.citedreferenceSchunk, R., and A. Nagy ( 2009 ) Ionospheres: Physics, Plasma Physics, and Chemistry, pp. 231 – 252, Cambridge Univ. Press, Cambridge.
dc.identifier.citedreferenceSchunk, R. W., L. Zhu, and J. J. Sojka ( 1994 ), Ionospheric response to traveling convection twin vortices, Geophys. Res. Lett., 21, 1759 – 1762, doi: 10.1029/94GL01059.
dc.identifier.citedreferenceSemeter, J., C. J. Heinselman, J. P. Thayer, R. A. Doe, and H. U. Frey ( 2003 ), Ion upflow enhanced by drifting F region plasma structure along the nightside polar cap boundary, Geophys. Res. Lett., 30 ( 22 ), 2139, doi: 10.1029/2003GL017747.
dc.identifier.citedreferenceShi, Q. Q., et al. ( 2014 ), Solar wind pressure pulse‐driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, 4274 – 4280, doi: 10.1002/2013JA019551.
dc.identifier.citedreferenceSibeck, D. G., and G. I. Korotova ( 1996 ), Occurrence patterns for transient magnetic field signatures at high latitudes, J. Geophys. Res., 101, 13413 – 13428, doi: 10.1029/96JA00187.
dc.identifier.citedreferenceSlinker, S. P., J. A. Fedder, W. J. Hughes, and J. G. Lyon ( 1999 ), Response of the ionosphere to a density pulse in the solar wind: Simulation of traveling convection vortices, Geophys. Res. Lett., 26, 3549 – 3552, doi: 10.1029/1999GL010688.
dc.identifier.citedreferenceStrangeway, R. J., R. E. Ergun, Y.‐J. Su, C. W. Carlson, and R. C. Elphic ( 2005 ), Factors controlling ionospheric outflows as observed at intermediate altitudes, J. Geophys. Res., 110, A03221, doi: 10.1029/2004JA010829.
dc.identifier.citedreferenceSun, T. R., C. Wang, J. J. Zhang, V. A. Pilipenko, Y. Wang, and J. Y. Wang ( 2015 ), The chain response of the magnetospheric and ground magnetic field to interplanetary shocks, J. Geophys. Res. Space Physics, 120, 157 – 165, doi: 10.1002/2014JA020754.
dc.identifier.citedreferenceTian, A. M., X. C. Shen, Q. Q. Shi, B. B. Tang, M. Nowada, Q. G. Zong, and S. Y. Fu ( 2016 ), Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations, J. Geophys. Res. Space Physics, 121, 10,813 – 10,830 doi: 10.1002/2016JA022459.
dc.identifier.citedreferenceTóth, G. et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231 ( 3 ), 870 – 903, doi: 10.1016/j.jcp.2011.02.006.
dc.identifier.citedreferenceWinser, K. J., M. Lockwood, G. O. L. Jones, and K. Suvanto ( 1989 ), Observations of nonthermal plasmas at different aspect angles, J. Geophys. Res., 94, 1439 – 1449, doi: 10.1029/JA094iA02p01439.
dc.identifier.citedreferenceYau, A. W., T. Abe, and W. K. Peterson ( 2007 ), The polar wind: Recent observations, J. Atmos. Sol. Terr. Phys., 69 ( 16 ), 1936 – 1983, doi: 10.1016/j.jastp.2007.08.010.
dc.identifier.citedreferenceYu, Y.‐Q., and A. J. Ridley ( 2011 ), Understanding the response of the ionosphere‐magnetosphere system to sudden solar wind density increases, J. Geophys. Res., 116, A04210, doi: 10.1029/2010JA015871.
dc.identifier.citedreferenceYuan, Z.‐G., X.‐H. Deng, and J.‐F. Wang ( 2008 ), DMSP/GPS observations of intense ion upflow in the midnight polar ionosphere associated with the SED plume during a super geomagnetic storm, Geophys. Res. Lett., 35, L19110, doi: 10.1029/2008GL035462.
dc.identifier.citedreferenceZesta, E. ( 2002 ), A statistical study of traveling convection vortices using the Magnetometer Array for Cusp and Cleft Studies, J. Geophys. Res., 107 ( A10 ), 1317, doi: 10.1029/1999JA000386.
dc.identifier.citedreferenceZesta, E., W. J. Hughes, M. J. Engebretson, T. J. Hughes, A. J. Lazarus, and K. I. Paularena ( 1999 ), The November 9, 1993, traveling convection vortex event: A case study, J. Geophys. Res., 104, 28041 – 28058, doi: 10.1029/1999JA900306.
dc.identifier.citedreferenceZettergren, M., J. Semeter, C. Heinselman, and M. Diaz ( 2011 ), Incoherent scatter radar estimation of F region ionospheric composition during frictional heating events, J. Geophys. Res., 116, A01318, doi: 10.1029/2010JA016035.
dc.identifier.citedreferenceZhang, S.‐R., P. J. Erickson, Y. Zhang, W. Wang, C. Huang, A. J. Coster, J. M. Holt, J. F. Foster, M. Sulzer, and R. Kerr ( 2017 ), Observations of ion‐neutral coupling associated with strong electrodynamic disturbances during the 2015 St. Patrick’s Day storm, J. Geophys. Res. Space Physics, 122, 1314 – 1337, doi: 10.1002/2016JA023307.
dc.identifier.citedreferenceZou, S., M. B. Moldwin, M. J. Nicolls, A. J. Ridley, A. J. Coster, E. Yizengaw, L. R. Lyons, and E. F. Donovan ( 2013 ), Electrodynamics of the high‐latitude trough: Its relationship with convection flows and field‐aligned currents, J. Geophys. Res. Space Physics, 118, 2565 – 2572, doi: 10.1002/jgra.50120.
dc.identifier.citedreferenceZou, S., M. B. Moldwin, A. J. Ridley, M. J. Nicolls, A. J. Coster, E. G. Thomas, and J. M. Ruohoniemi ( 2014 ), On the generation/decay of the storm‐enhanced density plumes: Role of the convection flow and field‐aligned ion flow, J. Geophys. Res. Space Physics, 119, 8543 – 8559, doi: 10.1002/2014JA020408.
dc.identifier.citedreferenceZou, S., A. Ridley, X. Jia, E. Boyd, M. Nicolls, A. Coster, E. Thomas, and J. M. Ruohoniemi ( 2017 ), PFISR observation of intense ion upflow fluxes associated with an SED during the 1 June 2013 geomagnetic storm, J. Geophys. Res. Space Physics, 122, 2589 – 2604, doi: 10.1002/2016JA023697.
dc.identifier.citedreferenceAraki, T. ( 1977 ), Global structure of geomagnetic sudden commencements, Planet. Space Sci., 25 ( 4 ), 373 – 384, doi: 10.1016/0032‐0633(77)90053‐8.
dc.identifier.citedreferenceAraki, T. ( 1994 ) A physical model of the geomagnetic sudden commencement, in Solar Wind Sources of Magnetospheric Ultra‐Low‐Frequency Waves, edited by M. J. Engebretson, K. Takahashi and M. Scholer, pp. 183 – 200, AGU, Washington, D. C., doi: 10.1029/GM081p0183.
dc.identifier.citedreferenceBuzulukova, N., M.‐C. Fok, J. Goldstein, P. Valek, D. J. McComas, and P. C. Brandt ( 2010 ), Ring current dynamics in moderate and strong storms: Comparative analysis of TWINS and IMAGE/HENA data with the Comprehensive Ring Current Model: STRONG STORM VERSUS MODERATE STORM, J. Geophys. Res., 115, A12234, doi: 10.1029/2010JA015292.
dc.identifier.citedreferenceChappell, C. R. ( 2015 ), The role of the ionosphere in providing plasma to the terrestrial magnetosphere—An historical overview, Space Sci. Rev., 192 ( 1–4 ), 5 – 25, doi: 10.1007/s11214‐015‐0168‐5.
dc.identifier.citedreferenceChi, P. J., D.‐H. Lee, and Russell C. T. ( 2006 ), Tamao travel time of sudden impulses and its relationship to ionospheric convection vortices, J. Geophys. Res., 111, A08205, doi: 10.1029/2005JA011578.
dc.identifier.citedreferenceCollis, P. N., and I. Häggström ( 1991 ), High‐latitude ionospheric response to a geomagnetic sudden commencement, J. Atmos. Terr. Phys., 53 ( 3–4 ), 241 – 248, doi: 10.1016/0021‐9169(91)90108‐J.
dc.identifier.citedreferenceCurto, J. J., T. Araki, and L. F. Alberca ( 2007 ), Evolution of the concept of sudden storm commencements and their operative identification, Earth, Planets Space, 59 ( 11 ), i – xii, doi: 10.1186/BF03352059.
dc.identifier.citedreferenceDoupnik, J. R., A. Brekke, and P. M. Banks ( 1977 ), Incoherent scatter radar observations during three sudden commencements and a Pc 5 event on August 4, 1972, J. Geophys. Res., 82, 499 – 514, doi: 10.1029/JA082i004p00499.
dc.identifier.citedreferenceFok, M.‐C., R. A. Wolf, R. W. Spiro, and T. E. Moore ( 2001 ), Comprehensive computational model of Earth’s ring current, J. Geophys. Res., 106, 8417 – 8424, doi: 10.1029/2000JA000235.
dc.identifier.citedreferenceFoster, J. C., et al. ( 2005 ), Multiradar observations of the polar tongue of ionization, J. Geophys. Res., 110, A09S31, doi: 10.1029/2004JA010928.
dc.identifier.citedreferenceFriis‐Christensen, E., M. A. McHenry, C. R. Clauer, and S. Vennerstrøm ( 1988 ), Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind, Geophys. Res. Lett., 15, 253 – 256, doi: 10.1029/GL015i003p00253.
dc.identifier.citedreferenceFujita, S., T. Tanaka, T. Kikuchi, K. Fujimoto, K. Hosokawa, and M. Itonaga ( 2003a ), A numerical simulation of the geomagnetic sudden commencement: 1. Generation of the field-aligned current associated with the preliminary impulse, J. Geophys. Res., 108 ( A12 ), 1416, doi: 10.1029/2002JA009407.
dc.identifier.citedreferenceFujita, S., T. Tanaka, T. Kikuchi, K. Fujimoto, and M. Itonaga ( 2003b ), A numerical simulation of the geomagnetic sudden commencement: 2. Plasma processes in the main impulse, J. Geophys. Res., 108 ( A12 ), 1417, doi: 10.1029/2002JA009763.
dc.identifier.citedreferenceFujita, S., T. Tanaka, and T. Motoba ( 2005 ), A numerical simulation of the geomagnetic sudden commencement: 3. A sudden commencement in the magnetosphere‐ionosphere compound system, J. Geophys. Res., 110, A11203, doi: 10.1029/2005JA011055.
dc.identifier.citedreferenceFukushima, N. ( 1976 ), Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform‐conductivity ionosphere, Rep. Ionos. Space Res. Jpn., 30, 1 – 2.
dc.identifier.citedreferenceGillies, D. M., J.‐P. St.‐Maurice, K. A. McWilliams, and S. Milan ( 2012 ), Global‐scale observations of ionospheric convection variation in response to sudden increases in the solar wind dynamic pressure, J. Geophys. Res., 117, A04209, doi: 10.1029/2011JA017255.
dc.identifier.citedreferenceGlassmeier, K.‐H., M. Hönisch, and J. Untiedt ( 1989 ), Ground‐based and satellite observations of traveling magnetospheric convection twin vortices, J. Geophys. Res., 94, 2520, doi: 10.1029/JA094iA03p02520.
dc.identifier.citedreferenceGlocer, A., M. Fok, X. Meng, G. Toth, N. Buzulukova, S. Chen, and K. Lin ( 2013 ), CRCM + BATS‐R‐US two‐way coupling, J. Geophys. Res. Space Physics, 118, 1635 – 1650, doi: 10.1002/jgra.50221.
dc.identifier.citedreferenceHeinselman, C. J., and M. J. Nicolls ( 2008 ), A Bayesian approach to electric field and E region neutral wind estimation with the Poker Flat Advanced Modular Incoherent Scatter Radar, Radio Sci., 43, RS5013, doi: 10.1029/2007RS003805.
dc.identifier.citedreferenceKane, T. A., and R. A. Makarevich ( 2010 ), HF radar observations of the F region ionospheric plasma response to Storm Sudden Commencements, J. Geophys. Res., 115, A07320, doi: 10.1029/2009JA014974.
dc.identifier.citedreferenceKataoka, R., H. Fukunishi, K. Hosokawa, H. Fujiwara, A. S. Yukimatu, N. Sato, and Y.‐K. Tung ( 2003 ), Transient production of F region irregularities associated with TCV passage, Ann. Geophys., 21 ( 7 ), 1531 – 1541, doi: 10.5194/angeo‐21‐1531‐2003.
dc.identifier.citedreferenceKikuchi, T., S. Tsunomura, K. Hashimoto, and K. Nozaki ( 2001 ), Field‐aligned current effects on midlatitude geomagnetic sudden commencements, J. Geophys. Res., 106, 15555 – 15565, doi: 10.1029/2001JA900030.
dc.identifier.citedreferenceKivelson, M. G., and D. J. Southwood ( 1991 ), Ionospheric traveling vortex generation by solar wind buffeting of the magnetosphere, J. Geophys. Res., 96, 1661 – 1667, doi: 10.1029/90JA01805.
dc.identifier.citedreferenceKubota, Y., R. Kataoka, M. Den, T. Tanaka, T. Nagatsuma, and S. Fujita ( 2015 ), Global MHD simulation of magnetospheric response of preliminary impulse to large and sudden enhancement of the solar wind dynamic pressure, Earth, Planets Space, 67 ( 1 ), doi: 10.1186/s40623‐015‐0270‐7.
dc.identifier.citedreferenceLanzerotti, L. J., R. M. Konik, A. Wolfe, D. Venkatesan, and C. G. Maclennan ( 1991 ), Cusp latitude magnetic impulse events: 1. Occurrence statistics, J. Geophys. Res., 96, 14009 – 14022, doi: 10.1029/91JA00567.
dc.identifier.citedreferenceLiu, H., and G. Lu ( 2004 ), Velocity shear-related ion upflow in the low‐altitude ionosphere, Ann. Geophys., 22, 1149 – 1153, doi: 10.5194/angeo-22-1149-2004.
dc.identifier.citedreferenceLotko, W. ( 2007 ), The magnetosphere–ionosphere system from the perspective of plasma circulation: A tutorial, J. Atmos. Sol.‐Terr. Phys., 69 ( 3 ), 191 – 211, doi: 10.1016/j.jastp.2006.08.011.
dc.identifier.citedreferenceLühr, H., W. Blawert, and H. Todd ( 1993 ), The ionospheric plasma flow and current patterns of travelling convection vortices: A case study, J. Atmos. Terr. Phys., 55 ( 14 ), 1717 – 1727, doi: 10.1016/0021‐9169(93)90140‐T.
dc.identifier.citedreferenceMoen, J., K. Oksavik, and H. C. Carlson ( 2004 ), On the relationship between ion upflow events and cusp auroral transients, Geophys. Res. Lett., 31, L11808, doi: 10.1029/2004GL020129.
dc.identifier.citedreferenceMoretto, T., E. Friis‐Christensen, H. Lühr, and E. Zesta ( 1997 ), Global perspective of ionospheric traveling convection vortices: Case studies of two Geospace Environmental Modeling events, J. Geophys. Res., 102, 11597 – 11610, doi: 10.1029/97JA00324.
dc.identifier.citedreferenceMurr, D. L., W. J. Hughes, A. S. Rodger, E. Zesta, H. U. Frey, and A. T. Weatherwax ( 2002 ), Conjugate observations of traveling convection vortices: The field‐aligned current system, J. Geophys. Res., 107 ( A10 ), 1306, doi: 10.1029/2002JA009456.
dc.identifier.citedreferenceMurr, D. L., and W. J. Hughes ( 2003 ), Solar wind drivers of Traveling Convection Vortices, Geophys. Res. Lett., 30 ( 7 ), 1354, doi: 10.1029/2002GL015498.
dc.identifier.citedreferenceNilsson, H., et al. ( 2008 ), Transients in oxygen outflow above the polar cap as observed by the Cluster spacecraft, Ann. Geophys., 26 ( 11 ), 3365 – 3373, doi: 10.5194/angeo‐26‐3365‐2008.
dc.identifier.citedreferenceNishida, A., and J. A. Jacobs ( 1962 ), World‐wide changes in the geomagnetic field, J. Geophys. Res., 67, 525 – 540, doi: 10.1029/JZ067i002p00525.
dc.identifier.citedreferenceOgawa, Y., S. C. Buchert, R. Fujii, S. Nozawa, and A. P. van Eyken ( 2009 ), Characteristics of ion upflow and downflow observed with the European Incoherent Scatter Svalbard radar, J. Geophys. Res., 114, A05305, doi: 10.1029/2008JA013817.
dc.identifier.citedreferenceOgawa, Y., R. Fujii, S. C. Buchert, S. Nozawa, S. Watanabe, and A. P. van Eyken ( 2000 ), Simultaneous EISCAT Svalbard and VHF radar observations of ion upflows at different aspect angles, Geophys. Res. Lett., 27, 81 – 84, doi: 10.1029/1999GL010665.
dc.identifier.citedreferenceRichards, P. G., and D. Voglozin ( 2011 ), Reexamination of ionospheric photochemistry, J. Geophys. Res., 116, A08307, doi: 10.1029/2011JA016613.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.