Show simple item record

Rates of erosion and landscape change along the Blue Ridge escarpment, southern Appalachian Mountains, estimated from in situ cosmogenic 10Be

dc.contributor.authorLinari, Colleen L.
dc.contributor.authorBierman, Paul R.
dc.contributor.authorPortenga, Eric W.
dc.contributor.authorPavich, Milan J.
dc.contributor.authorFinkel, Robert C.
dc.contributor.authorFreeman, Stewart P.H.T.
dc.date.accessioned2017-05-10T17:49:05Z
dc.date.available2018-07-09T17:42:25Zen
dc.date.issued2017-05
dc.identifier.citationLinari, Colleen L.; Bierman, Paul R.; Portenga, Eric W.; Pavich, Milan J.; Finkel, Robert C.; Freeman, Stewart P.H.T. (2017). "Rates of erosion and landscape change along the Blue Ridge escarpment, southern Appalachian Mountains, estimated from in situ cosmogenic 10Be." Earth Surface Processes and Landforms 42(6): 928-940.
dc.identifier.issn0197-9337
dc.identifier.issn1096-9837
dc.identifier.urihttps://hdl.handle.net/2027.42/136748
dc.description.abstractThe Blue Ridge escarpment, located within the southern Appalachian Mountains of Virginia and North Carolina, forms a distinct, steep boundary between the lower‐elevation Piedmont and higher‐elevation Blue Ridge physiographic provinces. To understand better the rate at which this landform and the adjacent landscape are changing, we measured cosmogenic beryllium‐10 (10Be) in quartz separated from sediment samples (n = 50) collected in 32 streams and from three exposed bedrock outcrops along four transects normal to the escarpment, allowing us to calculate erosion rates integrated over 104–105 years. These basin‐averaged erosion rates (5.4–49 m Myr−1) are consistent with those measured elsewhere in the southern Appalachain Mountains and show a positive relationship between erosion rate and average basin slope. Erosion rates show no relationship with basin size or relative position of the Brevard fault zone, a fundamental structural element of the region. The cosmogenic isotopic data, when considered along with the distribution of average basin slopes in each physiographic province, suggest that the escarpment is eroding on average more rapidly than the Blue Ridge uplands, which are eroding more rapidly than the Piedmont lowlands. This difference in erosion rates by geomorphic setting suggests that the elevation difference between the uplands and lowlands adjacent to the escarpment is being reduced but at extremely slow rates. Copyright © 2016 John Wiley & Sons, Ltd.
dc.publisherWiley Periodicals, Inc.
dc.publisherTerra Nostra, INQUA
dc.subject.otherberyllium‐10 (10Be)
dc.subject.otherpassive margin
dc.subject.othercosmogenic isotopes
dc.titleRates of erosion and landscape change along the Blue Ridge escarpment, southern Appalachian Mountains, estimated from in situ cosmogenic 10Be
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136748/1/esp4051-sup-0001-Supplementary_Colleen_small.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136748/2/esp4051_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136748/3/esp4051.pdf
dc.identifier.doi10.1002/esp.4051
dc.identifier.sourceEarth Surface Processes and Landforms
dc.identifier.citedreferencePratt TL, Çoruh C, Costain JK, Glover L. 1988. A geophysical study of the Earth’s crust in central Virginia: implications for Appalachian crustal structure. Journal of Geophysical Research 93: 6649 – 6667. DOI: 10.1029/JB093iB06p06649.
dc.identifier.citedreferencePrince PS, Spotila JA. 2013. Evidence of transient topographic disequilibrium in a landward passive margin river system: knickpoints and paleo‐landscapes of the New River basin, southern Appalachians. Earth Surface Processes and Landforms 38: 1685 – 1699. DOI: 10.1002/esp.3406.
dc.identifier.citedreferencePrince PS, Spotila JA, Henika WS. 2010. New physical evidence of the role of stream capture in active retreat of the Blue Ridge escarpment, southern Appalachians. Geomorphology 123: 305 – 319. DOI: 10.1016/j.geomorph.2010.07.023.
dc.identifier.citedreferencePrince PS, Spotila JA, Henika WS. 2011. Stream capture as driver of transient landscape evolution in a tectonically quiescent setting. Geology 39: 823 – 826. DOI: 10.1130/G32008.1.
dc.identifier.citedreferenceReusser L, Bierman PR, Rood D. 2015. Quantifying human impacts on rates of erosion and sediment transport at a landscape scale. Geology 43: 171 – 174. DOI: 10.1130/G36272.1.
dc.identifier.citedreferenceReuter JM. 2005. Erosion Rates and Patterns Inferred from Cosmogenic 10 Be in the Susquehanna River Basin, MSc Thesis. University of Vermont, Burlington, VT; 172 pp.
dc.identifier.citedreferenceRichmond GM, Fullerton DS. 1986. Introduction to Quaternary glaciations in the United States of America. In Quaternary Glaciations in the Northern Hemisphere, Sibrava V, Bowen DQ, Richmond GM (eds). Pergamon Press: Oxford; 3 – 10.
dc.identifier.citedreferenceRiebe CS, Kirchner JW, Granger DE, Finkel RC. 2000. Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic 26 Al and 10 Be in alluvial sediment. Geology 28: 803 – 806. DOI: 10.1130/0091-7613(2000)28<803:EEADIT>2.0.CO;2.
dc.identifier.citedreferenceRoper PJ, Justus PS. 1973. Polytectonic evolution of the Brevard zone. American Journal of Science 273A: 105 – 132.
dc.identifier.citedreferenceRowley DB, Forte AM, Moucha R, Mitrovica JX, Simmons NA, Grand SP. 2013. Dynamic topography change of the eastern United States since 3 million years ago. Science 340: 1560 – 1563. DOI: 10.1126/science.1229180.
dc.identifier.citedreferenceSalgado AAR, Marent BR, Cherem LFS, Bourlès D, Santos LJC, Braucher R, Barreto HN. 2013. Denudation and retreat of the Serra do Mar escarpment in southern Brazil derived from in situ ‐produced 10 Be concentration in river sediment. Earth Surface Processes and Landforms 39: 311 – 319. DOI: 10.1002/esp.3448.
dc.identifier.citedreferenceScharf TE, Codilean AT, de Wit M, Jansen JD, Kubik PW. 2013. Strong rocks sustain ancient postorogenic topography in southern Africa. Geology 41: 331 – 334. DOI: 10.1130/G33806.1.
dc.identifier.citedreferenceSchlische RW. 1993. Anatomy and evolution of the Triassic‐Jurassic continental rift system, eastern North America. Tectonics 12: 1026 – 1042. DOI: 10.1029/93TC01062.
dc.identifier.citedreferenceSchmandt B, Lin FC. 2014. P and S wave tomography of the mantle beneath the United States. Geophysical Research Letters 41: 6342 – 6349. DOI: 10.1002/2014GL061231.
dc.identifier.citedreferenceSeidl MA, Weissel JK, Pratson LF. 1996. The kinematics and pattern of escarpment retreat across the rifted continental margin of SE Australia. Basin Research 8: 301 – 316.
dc.identifier.citedreferenceSpotila JA, Bank GC, Reiners PW, Naeser CW, Naeser ND, Henika WS. 2003. Origin of the Blue Ridge escarpment along the passive margin of eastern North America. Basin Research 16: 41 – 63. DOI: 10.1046/j.1365-2117.2003.00219.x.
dc.identifier.citedreferenceSummerfield MA, Brown RW, Van Der Beek P, Braun J. 1997. Drainage divides, denudation, and the morphotectonic evolution of high‐elevation passive margins. Geological Society of America Abstracts with Programs 29: 476.
dc.identifier.citedreferenceTucker GE, Slingerland RL. 1994. Erosional dynamics, flexural isostasy, and long‐lived escarpments: a numerical modeling study. Journal of Geophysical Research 99: 12229 – 12243. DOI: 10.1029/94JB00320.
dc.identifier.citedreferenceVanacker V, von Blackenburg F, Hewawasam T, Kubik PW. 2007. Constraining landscape development of the Sri Lankan escarpment with cosmogenic nuclides in river sediment. Earth and Planetary Science Letters 253: 402 – 414. DOI: 10.1016/j.epsl.2006.11.003.
dc.identifier.citedreferenceWagner LS, Metcalf K, Stewart K. 2012. Crustal‐scale shortening structures beneath the Blue Ridge Mountains, North Carolina, USA. Lithosphere 4: 242 – 256. DOI: 10.1130/L184.1.
dc.identifier.citedreferenceWhite WA. 1950. Blue Ridge front; a fault scarp. Bulletin of the Geological Society of America 61: 1309. DOI: 10.1130/0016-7606(1950)61[1309:BRFFS]2.0.CO;2.
dc.identifier.citedreferenceWitt AC, Smith MS, Latham RS, Douglas TJ, Gillon KA, Fuemmeler SJ, Bauer JB, Wooten RM. 2007. Life, death, and landslides: the August 13–14 1940 storm event in Watauga County, North Carolina: 2007 Southeastern Section Meeting. Geological Society of America Abstracts with Programs 39: 76.
dc.identifier.citedreferenceXu S, Freeman SPHT, Rood DH, Shanks RM. 2015. Decadal 10 Be, 26 Al and 36 Cl QA measurements on the SUERC accelerator mass spectrometer. Nuclear Instruments and Methods B: Beam Interactions with Materials and Atoms 361: 39 – 42. DOI: 10.1016/j.nimb.2015.03.064.
dc.identifier.citedreferenceBalco G, Stone JO, Lifton NA, Dunai TJ. 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10 Be and 26 Al measurements. Quaternary Geochronology 3: 174 – 195. DOI: 10.1016/j.quageo.2007.12.001.
dc.identifier.citedreferenceBaldwin JA, Whipple KX, Tucker GE. 2003. Implications of the shear stress river incision model for the timescale of postorogenic decay of topography. Journal of Geophysical Research 108: 2158. DOI: 10.1029/2001JB000550.
dc.identifier.citedreferenceBank GC. 2002. Testing the Origins of the Blue Ridge Escarpment, Masters Thesis. Virginia Tech, Blacksburg, VA; 119 pp.
dc.identifier.citedreferenceBarron EJ. 1989. Climate variations and the Appalachians from the Late Paleozoic to the present: results from model simulations. Geomorphology 2: 99 – 118. DOI: 10.1016/0169-555X(89)90008-1.
dc.identifier.citedreferenceBattiau‐Queney Y. 1989. Constraints from deep crustal structure on long‐term landform development of the British Isles and eastern United States. Geomorphology 2: 53 – 70. DOI: 10.1016/0169-555X(89)90006-8.
dc.identifier.citedreferenceBierman P. 1995. How quickly does granite erode – evidence form analyses of in situ produced 10‐Be, 26‐Al, and 36‐Cl. Terra Nostra, INQUA: Berlin; p. 26.
dc.identifier.citedreferenceBierman PR, Caffee MW. 2001. Slow rates of rock surface erosion and sediment production across the Namib Desert and escarpment, Southern Africa. American Journal of Science 301: 326 – 358. DOI: 10.2475/ajs.301.4-5.326.
dc.identifier.citedreferenceBierman PR, Caffee MW. 2002. Cosmogenic exposure and erosion history of ancient Australian bedrock landforms. Geological Society of America Bulletin 114: 787 – 803. DOI: 10.1130/0016-7606(2002)114<0787:CEAEHO>2.0.CO;2.
dc.identifier.citedreferenceBierman PR, Steig EJ. 1996. Estimating rates of denudation and sediment transport using cosmogenic isotope abundances in sediment. Earth Surface Processes and Landforms 21: 125 – 139.
dc.identifier.citedreferenceBrown ET, Stallard RF, Larsen MC, Bourles DL, Raisbeck GM, Yiou F. 1998. Determination of predevelopment denudation rates of an agricultural watershed (Cayaguas River, Puerto Rico) using in‐situ‐produced 10 Be in river‐borne quartz. Earth and Planetary Science Letters 160: 723 – 728. DOI: 10.1016/S0012-821X(98)00123-X.
dc.identifier.citedreferenceBrown RW, Gallagher K, Gleadow AJW, Summerfield MA. 2000. Morphotectonic evolution of the South Atlantic margins of Africa and South America. In Geomorphology and Global Tectonics, Summerfield MA (ed). John Wiley & Sons: Chichester; 255 – 281.
dc.identifier.citedreferenceChild D, Elliott G, Mifsud C, Smith AM, Fink D. 2000. Sample processing for earth science studies at ANTARES. Nuclear Instruments and Methods in Physics Research B Beam Interactions with Materials and Atoms 172: 856 – 860. DOI: 10.1016/S0168-583X(00)00198-1.
dc.identifier.citedreferenceChu R, Leng W, Helmberger DV, Gurnis M. 2013. Hidden hotspot track beneath the eastern United States. Nature Geoscience 6: 963 – 966. DOI: 10.1038/ngeo1949.
dc.identifier.citedreferenceCockburn HAP, Brown RW, Summerfield MA, Seidl MA. 2000. Quantifying passive margin denudation and landscape development using a combined fission‐track thermochronology and cosmogenic isotope analysis approach. Earth and Planetary Science Letters 179: 429 – 435. DOI: 10.1016/S0012-821X(00)00144-8.
dc.identifier.citedreferenceCockburn HAP, Seidl MA, Summerfield MA. 1999. Quantifying denudation rates on inselbergs in the central Namib Desert using in situ‐produced cosmogenic 10 Be and 26 Al. Geology 27: 399 – 402. DOI: 10.1130/0091-7613(1999)​027<0399:QDROII>​2.3.CO;2.
dc.identifier.citedreferenceDavis WM. 1899. The geographical cycle. Geographical Journal 14: 481 – 504. DOI: 10.2307/1774538.
dc.identifier.citedreferenceDavis WM. 1903. The stream contest along the Blue Ridge. Geological Society: Philadelphia Bulletin 3: 213 – 244.
dc.identifier.citedreferenceDelcourt PA, Delcourt HR. 1984. Late Quaternary paleoclimates and biotic responses in eastern North America and the western North Atlantic Ocean. Paleogeography, Paleoclimatology, Paleoecology 48: 263 – 284. DOI: 10.1016/0031-0182(84)90048-8.
dc.identifier.citedreferenceDietrich RV. 1957. Origin of the Blue Ridge Escarpment directly southwest of Roanoke, Virginia. Virginia Journal of Science 9: 233 – 246.
dc.identifier.citedreferenceDietrich RV. 1959. Geology and Mineral Resources of Floyd County of the Blue Ridge Upland, Southwestern Virginia, Bulletin of the Virginia Polytechnic Institute no. 134. Virginia Tech: Blacksburg, VA; 160 pp.
dc.identifier.citedreferenceDuxbury J, Bierman PR, Portenga EW, Pavich MJ, Southworth S, Freeman SPHT. 2015. Erosion rates in and around Shenandoah National Park, Virginia, determined using analysis of cosmogenic 10 Be. American Journal of Science 315: 46 – 76. DOI: 10.2475/01.2015.02.
dc.identifier.citedreferenceFleming A, Summerfield MA, Stone JO, Fifield LK, Cresswell RG. 1999. Denudation rates for the southern Drakensberg Escarpment, SE Africa, derived from in‐situ‐produced cosmogenic 36 Cl; initial results. Journal of the Geological Society of London 156: 209 – 212. DOI: 10.1144/gsjgs.156.2.0209.
dc.identifier.citedreferenceGallen SF, Wegmann KW, Bohnenstiehl DR. 2013. Miocene rejuvenation of topographic relief in the southern Appalachians. GSA Today 23: 4 – 10.
dc.identifier.citedreferenceGilchrist AR, Summerfield MA. 1990. Tectonic models of passive margin evolution and their implications for theories of long‐term landscape development. In Process Models and Theoretical Geomorphology, Kirkby MJ (ed). John Wiley & Sons: Chichester; 55 – 84.
dc.identifier.citedreferenceGranger DE, Kirchner JW, Finkel RC. 1997. Quaternary downcutting rate of the New River, Virginia, measured from differential decay of cosmogenic 26 Al and 10 Be in cave‐deposited alluvium. Geology 25: 107 – 110. DOI: 10.1130/0091-7613(1997)025<0107:QDROTN>2.3.CO;2.
dc.identifier.citedreferenceHack JT. 1960. Interpretation of erosional topography in humid temperate regions. American Journal of Science 258A: 80 – 97.
dc.identifier.citedreferenceHack JT. 1975. Dynamic equilibrium and landscape evolution. In Theories of Landform Development, Melhorn WN, Flemal RC (eds). State University of New York at Binghamton: Binghamton, NY; 87 – 102.
dc.identifier.citedreferenceHack JT. 1982. Physiographic Divisions and Differential Uplift in the Piedmont and Blue‐Ridge, US Geological Survey Professional Paper 1265. US Geological Survey: Reston, VA; 49 pp.
dc.identifier.citedreferenceHancock GS, Kirwan ML. 2007. Summit erosion rates deduced from 10 Be: Implications for relief production in the central Appalachians. Geology 35: 89 – 92. DOI: 10.1130/G23147A.1.
dc.identifier.citedreferenceHayes CW, Campbell MR. 1894. Geomorphology of the Southern Appalachians. National Geographic Society: London.
dc.identifier.citedreferenceHeimsath AM, Chappell J, Finkel RC, Fifield K, Alimanovic A. 2006. Escarpment erosion and landscape evolution in southeastern Australia. Geological Society of America Special Paper 398: 173 – 190. DOI: 10.1130/2006.2398(10).
dc.identifier.citedreferenceHeimsath AM, Dietrich WE, Nishiizumi K, Finkel RC. 1997. The soil production function and landscape equilibrium. Nature 388: 358 – 361.
dc.identifier.citedreferenceHewawasam T, von Blackenburg F, Schaller M, Kubik P. 2003. Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology 31: 597 – 600. DOI: 10.1130/0091-7613(2003)031<0597:IOHONE>2.0.CO;2.
dc.identifier.citedreferenceJapsen P, Chalmers JA, Green PF, Bonow JM. 2012. Elevated, passive continental margins: Not rift shoulders, but expressions of episodic, post‐rift burial and exhumation. Global and Planetary Change 90–91: 73 – 86. DOI: 10.1016/j.gloplacha.2011.05.004.
dc.identifier.citedreferenceJudson S. 1975. Evolution of the Appalachian topography: theories of landform development. In Publications in Geomorphology. State University of New York at Binghamton: New York; 29 – 44.
dc.identifier.citedreferenceJungers MC, Bierman PR, Matmon A, Nichols KK, Larsen J, Finkel R. 2009. Tracing hillslope sediment production and transport with in situ and meteoric 10 Be. Journal of Geophysical Research – Earth Surface 114: F04020.
dc.identifier.citedreferenceKirchner JW, Finkel RC, Riebe CS, Granger DE, Clayton JL, King JG, Megahan WF. 2001. Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales. Geology 29: 591 – 594. DOI: 10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2.
dc.identifier.citedreferenceKohl CP, Nishiizumi K. 1992. Chemical isolation of quartz for measurement of in‐situ – produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56: 3583 – 3587. DOI: 10.1016/0016-7037(92)90401-4.
dc.identifier.citedreferenceLal D. 1991. Cosmic ray labeling of erosion surfaces; in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104 ( 2‐4 ): 424 – 439.
dc.identifier.citedreferenceMandal SK, Lupker M, Burg J‐P, Valla PG, Haghipour N, Christl M. 2015. Spatial variability of 10 Be‐derived erosion rates across the southern Peninsular Indian escarpment: a key to landscape evolution across passive margins. Earth and Planetary Science Letters 425: 154 – 167. DOI: 10.1016/j.epsl.2015.05.050.
dc.identifier.citedreferenceMatmon A, Bierman PR, Enzel Y. 2002. Pattern and tempo of great escarpment erosion. Geology 30: 1135 – 1138. DOI: 10.1130/0091-7613(2002)030<1135:PATOGE>2.0.CO;2.
dc.identifier.citedreferenceMatmon A, Bierman PR, Larsen J, Southworth CS, Pavich MJ, Finkel RC, Caffee MW. 2003. Erosion of an ancient mountain range, the Great Smoky Mountains, North Carolina and Tennessee. American Journal of Science 303: 817 – 855. DOI: 10.2475/ajs.303.9.817.
dc.identifier.citedreferenceMatmon A, Mushkin A, Enzel Y, Grodek T. 2013. Erosion of a granite inselberg, Gross Spitzkoppe, Namib Desert. Geomorphology 201: 52 – 59. DOI: 10.1016/j.geomorph.2013.06.005.
dc.identifier.citedreferenceMatsuoka N, Murton J. 2008. Frost weathering: recent advances and future directions. Permafrost and Periglacial Processes 19: 1099 – 1530. DOI: 10.1002/ppp.620.
dc.identifier.citedreferenceMcKeon RE, Zeitler PK, Pazzaglia FJ, Idleman BD, Enkelmann E. 2011. Decay of an old orogen; inferences about Appalachian landscape evolution from low‐temperature thermochronology. Geological Society of America Bulletin 126: 31 – 46.
dc.identifier.citedreferenceMiller SR, Sak PB, Kirby E, Bierman PR. 2013. Neogene rejuvenation of central Appalachian topography: evidence for differential rock uplift from stream profiles and erosion rates. Earth and Planetary Science Letters 369–370: 1 – 12. DOI: 10.1016/j.epsl.2013.04.007.
dc.identifier.citedreferenceMontgomery DR, Brandon MT. 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters 201: 481 – 489. DOI: 10.1016/S0012-821X(02)00725-2.
dc.identifier.citedreferenceSlingerland RL, Furlong KP. 1989. Geodynamic and geomorphic evolution of the Permo‐Triassic Appalachian Mountains. Geomorphology 2: 23 – 27. DOI: 10.1016/0169-555X(89)90004-4.
dc.identifier.citedreferenceNaeser CW, Naeser ND, Kunk MJ, Morgan BAI, Schultz AP, Southworth CS, Weems RE. 2001. Paleozoic through Cenozoic Uplift, Erosion, Stream Capture, and Deposition History in the Valley and Ridge, Blue Ridge, Piedmont, and Coastal Plain Provinces of Tennessee, North Carolina, Virginia, Maryland, and District of Columbia, Geological Society of America Abstracts with Programs 133. Geological Society of America: Washington, DC.
dc.identifier.citedreferenceNaeser CW, Naeser ND, Newell WL, Southworth CS, Edwards LE, Weems RE. 2016. Erosional and depositional history of the Atlantic passive margin as recorded in detrital zircon fission‐track ages and lithic detritus in Atlantic Coastal plain sediments. American Journal of Science February 316: 110 – 168. DOI: 10.2475/02.2016.02.
dc.identifier.citedreferenceNishiizumi K, Imamura M, Caffee MW, Southon JR, Finkel RC, McAninch J. 2007. Absolute calibration of 10 Be AMS standards. Nuclear Instruments and Methods in Physics Research B 258: 403 – 413. DOI: 10.1016/j.nimb.2007.01.297.
dc.identifier.citedreferenceOllier CD. 1984. Morphotectonics of continental margins with great escarpments. In Tectonic Geomorphology, Morisawa M, Hack JT (eds), Volume International Series 15: Binghamton Symposia in Geomorphology. Unwin Hayman: Boston, MA; 3 – 25.
dc.identifier.citedreferencePazzaglia FJ, Brandon MT. 1996. Macrogeomorphic evolution of the post‐Triassic Appalachian Mountains determined by deconvolution of the offshore basin sedimentary record. Basin Research 8: 255 – 278.
dc.identifier.citedreferencePazzaglia FJ, Gardner TW. 1994. Late Cenozoic flexural deformation of the middle U.S. Atlantic passive margin. Journal of Geophysical Research B Solid Earth and Planets 99: 12143 – 12157. DOI: 10.1029/93JB03130.
dc.identifier.citedreferencePersano C, Stuart FM, Bishop P, Barfod DN. 2002. Apatite (U‐Th)/He age constraints on the development of the Great Escarpment on the southeastern Australian passive margin. Earth and Planetary Science Letters 200: 79 – 90. DOI: 10.1016/S0012-821X(02)00614-3.
dc.identifier.citedreferencePortenga EW, Bierman PR. 2011. Understanding Earth’s eroding surface with 10 Be. GSA Today 21: 4 – 10. DOI: 10.1130/G111A.1.
dc.identifier.citedreferencePortenga EW, Bierman PR, Rizzo DM, Rood DH. 2013. Low rates of bedrock outcrop erosion in the central Appalachian Mountains inferred from in situ 10 Be. Geological Society of America Bulletin 125: 201 – 215. DOI: 10.1130/B30559.1.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.