Show simple item record

The role of ceramic and glass science research in meeting societal challenges: Report from an NSFâ sponsored workshop

dc.contributor.authorFaber, Katherine T.
dc.contributor.authorAsefa, Tewodros
dc.contributor.authorBackhaus‐ricoult, Monika
dc.contributor.authorBrow, Richard
dc.contributor.authorChan, Julia Y.
dc.contributor.authorDillon, Shen
dc.contributor.authorFahrenholtz, William G.
dc.contributor.authorFinnis, Michael W.
dc.contributor.authorGaray, Javier E.
dc.contributor.authorGarcía, R. Edwin
dc.contributor.authorGogotsi, Yury
dc.contributor.authorHaile, Sossina M.
dc.contributor.authorHalloran, John
dc.contributor.authorHu, Juejun
dc.contributor.authorHuang, Liping
dc.contributor.authorJacobsen, Steven D.
dc.contributor.authorLara‐curzio, Edgar
dc.contributor.authorLeBeau, James
dc.contributor.authorLee, William E.
dc.contributor.authorLevi, Carlos G.
dc.contributor.authorLevin, Igor
dc.contributor.authorLewis, Jennifer A.
dc.contributor.authorLipkin, Don M.
dc.contributor.authorLu, Kathy
dc.contributor.authorLuo, Jian
dc.contributor.authorMaria, Jon‐paul
dc.contributor.authorMartin, Lane W.
dc.contributor.authorMartin, Steve
dc.contributor.authorMessing, Gary
dc.contributor.authorNavrotsky, Alexandra
dc.contributor.authorPadture, Nitin P.
dc.contributor.authorRandall, Clive
dc.contributor.authorRohrer, Gregory S.
dc.contributor.authorRosenflanz, Anatoly
dc.contributor.authorSchaedler, Tobias A.
dc.contributor.authorSchlom, Darrell G.
dc.contributor.authorSehirlioglu, Alp
dc.contributor.authorStevenson, Adam J.
dc.contributor.authorTani, Toshihiko
dc.contributor.authorTikare, Veena
dc.contributor.authorTrolier‐mckinstry, Susan
dc.contributor.authorWang, Hong
dc.contributor.authorYildiz, Bilge
dc.date.accessioned2017-05-10T17:49:07Z
dc.date.available2018-07-09T17:42:25Zen
dc.date.issued2017-05
dc.identifier.citationFaber, Katherine T.; Asefa, Tewodros; Backhaus‐ricoult, Monika ; Brow, Richard; Chan, Julia Y.; Dillon, Shen; Fahrenholtz, William G.; Finnis, Michael W.; Garay, Javier E.; García, R. Edwin ; Gogotsi, Yury; Haile, Sossina M.; Halloran, John; Hu, Juejun; Huang, Liping; Jacobsen, Steven D.; Lara‐curzio, Edgar ; LeBeau, James; Lee, William E.; Levi, Carlos G.; Levin, Igor; Lewis, Jennifer A.; Lipkin, Don M.; Lu, Kathy; Luo, Jian; Maria, Jon‐paul ; Martin, Lane W.; Martin, Steve; Messing, Gary; Navrotsky, Alexandra; Padture, Nitin P.; Randall, Clive; Rohrer, Gregory S.; Rosenflanz, Anatoly; Schaedler, Tobias A.; Schlom, Darrell G.; Sehirlioglu, Alp; Stevenson, Adam J.; Tani, Toshihiko; Tikare, Veena; Trolier‐mckinstry, Susan ; Wang, Hong; Yildiz, Bilge (2017). "The role of ceramic and glass science research in meeting societal challenges: Report from an NSFâ sponsored workshop." Journal of the American Ceramic Society 100(5): 1777-1803.
dc.identifier.issn0002-7820
dc.identifier.issn1551-2916
dc.identifier.urihttps://hdl.handle.net/2027.42/136749
dc.description.abstractUnder the sponsorship of the U.S. National Science Foundation, a workshop on emerging research opportunities in ceramic and glass science was held in September 2016. Reported here are proceedings of the workshop. The report details eight challenges identified through workshop discussions: Ceramic processing: Programmable design and assembly; The defect genome: Understanding, characterizing, and predicting defects across time and length scales; Functionalizing defects for unprecedented properties; Ceramic flatlands: Defining structureâ property relations in freeâ standing, supported, and confined twoâ dimensional ceramics; Ceramics in the extreme: Discovery and design strategies; Ceramics in the extreme: Behavior of multimaterial systems; Understanding and exploiting glasses and melts under extreme conditions; and Rational design of functional glasses guided by predictive modeling. It is anticipated that these challenges, once met, will promote basic understanding and ultimately enable advancements within multiple sectors, including energy, environment, manufacturing, security, and health care.
dc.publisherEarthscan
dc.publisherWiley Periodicals, Inc.
dc.subject.otherglass
dc.subject.otherlayered ceramics
dc.subject.otherprocessing
dc.subject.otherultrahighâ temperature ceramics
dc.subject.otherdefects
dc.titleThe role of ceramic and glass science research in meeting societal challenges: Report from an NSFâ sponsored workshop
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136749/1/jace14881_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136749/2/jace14881.pdf
dc.identifier.doi10.1111/jace.14881
dc.identifier.sourceJournal of the American Ceramic Society
dc.identifier.citedreferenceNeuman EW, Hilmas GE, Fahrenholtz WG. Strength of zirconium diboride to 2300°C. J Am Ceram Soc. 2013; 96: 47 â 50.
dc.identifier.citedreferenceSiddiqui SF, Knipe K, Manero A, et al. Synchrotron Xâ ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients. Rev Sci Instrum. 2013; 84: 1 â 7.
dc.identifier.citedreferenceWeyant CM, Almer J, Faber KT. Throughâ thickness determination of phase composition and residual stresses in thermal barrier coatings using highâ energy Xâ rays. Acta Mater. 2010; 58: 943 â 951.
dc.identifier.citedreferenceHarder BJ, Ramirezâ Rico J, Almer JD, Lee KN, Faber KT. Chemical and mechanical consequences of environmental barrier coating exposure to calciumâ magnesiumâ aluminosilicate. J Am Ceram Soc. 2011; 94 ( S1 ): S178 â S185.
dc.identifier.citedreferenceStolzerburg F, Kenesei P, Almer J, Lee KN, Johnson MT, Faber KT. The influence of calciumâ magnesiumâ aluminosilicate deposits on internal stresses in Yb 2 Si 2 O 7 multilayer environmental barrier coatings. Acta Mater. 2016; 105: 189 â 198.
dc.identifier.citedreferenceStaron P, Fischer T, Keckes J, et al. Depthâ resolved residual stress analysis with highâ energy synchrotron Xâ rays using a conical slit cell. Mater Sci Forum. 2014; 768â 769: 72 â 75.
dc.identifier.citedreferenceMauro JC, Philip CS, Vaughn DJ, Pambianchi MS. Glass science in the United States: current status and future directions. Int J Appl Glass Sci. 2014; 5: 2 â 15.
dc.identifier.citedreferenceMauro JC, Zanotto ED. Two centuries of glass research: historical trends, current status, and grand challenges for the future. Int J Appl Glass Sci. 2014; 5: 313 â 327.
dc.identifier.citedreferenceSchilling JS. The use of high pressure in basic and materials science. J Phys Chem Solids. 1998; 59: 553 â 568.
dc.identifier.citedreferenceGrande T, Holloway JR, McMillan PF, Angell CA. Nitride glasses obtained by highâ pressure synthesis. Nature. 1994; 369: 43 â 45.
dc.identifier.citedreferenceNgai KL, Capaccioli S. Impact of the application of pressure on the fundamental understanding of glass transition. J Physâ Condens Matter. 2008; 20: 244101.
dc.identifier.citedreferenceWondraczek L, Sen S, Behrens H, Youngman RE. Structureâ energy map of alkali borosilicate glasses: effects of pressure and temperature. Phys Rev B. 2007; 76 ( 1 ).
dc.identifier.citedreferenceGrimsditch M. Polymorphism in amorphous SiO 2. Phys Rev Lett. 1984; 52: 2379.
dc.identifier.citedreferenceMurakami M, Bass JD. Spectroscopic evidence for ultrahighâ pressure polymorphism in SiO 2 glass. Phys Rev Lett. 2010; 104: 025504.
dc.identifier.citedreferenceNicholas J, Sinogeikin S, Kieffer J, Bass J. Spectroscopic evidence of polymorphism in vitreous B 2 O 3. Phys Rev Lett. 2004; 92: 215701.
dc.identifier.citedreferenceKono Y, Kenneyâ Benson C, Ikuta D, Shibazaki Y, Wang YB, Shen GY. Ultrahighâ pressure polyamorphism in GeO 2 glass with coordination number > 6. Proc Natl Acad Sci. 2016; 113: 3436 â 3441.
dc.identifier.citedreferenceTsiok OB, Brazhkin VV, Lyapin AG, Khvostantsev LG. Logarithmic kinetics of the amorphousâ amorphous transformations in SiO 2 and GeO 2 glasses under high pressure. Phys Rev Lett. 1998; 80: 999.
dc.identifier.citedreferenceZeidler A, Wezka K, Rowlands RF, et al. Highâ pressure transformation of SiO 2 glass from a tetrahedral to an octahedral network: a joint approach using neutron diffraction and molecular dynamics. Phys Rev Lett. 2014; 113: 135501.
dc.identifier.citedreferenceMeng Y, Hrubiak R, Rod E, Boehler R, Shen GY. New developments in laserâ heated diamond anvil cell with in situ synchrotron xâ ray diffraction at High Pressure Collaborative Access Team. Rev Sci Instrum. 2015; 86: 072201.
dc.identifier.citedreferenceSalmon PS, Zeidler A. Networks under pressure: the development of in situ highâ pressure neutron diffraction for glassy and liquid materials. J Physâ Condens Matter. 2015; 27: 133201.
dc.identifier.citedreferenceLee SK, Eng PJ, Mao HK, et al. Probing of bonding changes in B 2 O 3 glasses at high pressure with inelastic Xâ ray scattering. Nat Mater. 2005; 4: 851 â 854.
dc.identifier.citedreferenceLin JF, Santoro M, Struzhkin VV, Mao HK, Hemley RJ. In situ high pressureâ temperature Raman spectroscopy technique with laserâ heated diamond anvil cells. Rev Sci Instrum. 2004; 75: 3302 â 3306.
dc.identifier.citedreferenceLi FF, Cui QL, He Z, et al. Brillouin scattering spectroscopy for a laser heated diamond anvil cell. Appl Phys Lett. 2006; 88: 203507.
dc.identifier.citedreferenceEdwards T, Endo T, Walton JH, Sen S. Observation of the transition state for pressureâ induced BO 3 â BO 4 conversion in glass. Science. 2014; 345: 1027 â 1029.
dc.identifier.citedreferenceStorek M, Adjeiâ Acheamfour M, Christensen R, Martin SW, Boehmer R. Positive and negative mixed glass former effects in sodium borosilicate and borophosphate glasses studied by 23 Na NMR. J Phys Chem B. 2016; 120: 4482 â 4495.
dc.identifier.citedreferenceMartin SW, Bischoff C, Schuller K. Composition dependence of the Na+ ion conductivity in 0.5Na 2 S + 0.5[xGeS 2 + (1 â x)PS 5/2 ] mixed glass former glasses: a structural interpretation of a negative mixed glass former effect. J Phys Chem B. 2015; 119: 15738 â 15751.
dc.identifier.citedreferenceChristensen R, Olson G, Martin SW. Ionic conductivity of mixed glass former 0.35Na 2 O + 0.65[xB 2 O 3 + (1 â x)P 2 O 5 ] glasses. J Phys Chem B. 2013; 117: 16577 â 16586.
dc.identifier.citedreferenceGuerette M, Ackerson MR, Thomas J, et al. Structure and properties of silica glass densified in cold compression and hot compression. Sci Rep. 2015; 5: 15343.
dc.identifier.citedreferenceHuang LP, Kieffer J. Anomalous thermomechanical properties and laserâ induced densification of vitreous silica. Appl Phys Lett. 2006; 89: 141915.
dc.identifier.citedreferenceAngell CA. Calorimetric studies of the energy landscapes of glassformers by hyperquenching methods. J Therm Anal Calorim. 2002; 69: 785 â 794.
dc.identifier.citedreferenceAngell CA, Yue YZ, Wang LM, Copley JRD, Borick S, Mossa S. Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses. J Physâ Condens Matter. 2003; 15: S1051 â S1068.
dc.identifier.citedreferenceKiczenski TJ, Stebbins JF. The development of a rapid quenching device for the study of the dependence of glass structure on fictive temperature. Rev Sci Instrum. 2006; 77: 013901.
dc.identifier.citedreferenceRouxel T, Ji H, Guin JP, Augereau F, Ruffle B. Indentation deformation mechanism in glass: densification versus shear flow. J Appl Phys. 2010; 107: 9.
dc.identifier.citedreferenceYuan FL, Huang LP. Brittle to ductile transition in densified silica glass. Sci Rep. 2014; 4: 5035.
dc.identifier.citedreferenceSmedskjaer MM, Bauchy M, Mauro JC, Rzoska SJ, Bockowski M. Unique effects of thermal and pressure histories on glass hardness: structural and topological origin. J Chem Phys. 2015; 143: 16.
dc.identifier.citedreferenceLiebermann RC. Multiâ anvil, high pressure apparatus: a halfâ century of development and progress. High Press Res. 2011; 31: 493 â 532.
dc.identifier.citedreferenceSmedskjaer MM, Rzoska SJ, Bockowski M, Mauro JC. Mixed alkaline earth effect in the compressibility of aluminosilicate glasses. J Chem Phys. 2014; 140: 5.
dc.identifier.citedreferenceKlement W, Willens RH, Duwez P. Nonâ crystalline structure in solidified goldâ silicon alloys. Nature. 1960; 187: 869 â 870.
dc.identifier.citedreferenceInoue A, Zhang T, Masumoto T. Glassâ forming ability of alloys. J Nonâ Cryst Solids. 1993; 156: 473 â 480.
dc.identifier.citedreferenceInoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000; 48: 279 â 306.
dc.identifier.citedreferenceSarjeant PT, Roy R. Reactivity of Solids. DeVries RC, Mitchell JW, Roberts RW, Cannon P, eds. New York: John Wiley & Sons, Inc.; 1969.
dc.identifier.citedreferenceNassau K. Rapidly quenched glasses. J Nonâ Cryst Solids. 1980; 42: 423 â 431.
dc.identifier.citedreferenceUlrich DR, Smoke EJ. Devitrified barium titanate dielectrics. J Am Ceram Soc. 1966; 49: 210 â 215.
dc.identifier.citedreferenceNassau K, Cava RJ, Glass AM. The ionicâ conductivity variation in rapidly quenched lithiumâ containing glasses. Solid State Ionics. 1981; 2: 163 â 170.
dc.identifier.citedreferenceWeber JKR, Abadie JG, Hixson AD, Nordine PC, Jerman GA. Glass formation and polyamorphism in rareâ earth oxideâ aluminum oxide compositions. J Am Ceram Soc. 2000; 83: 1868 â 1872.
dc.identifier.citedreferenceRosenflanz A, Frey M, Endres B, Anderson T, Richards E, Schardt C. Bulk glasses and ultrahard nanoceramics based on alumina and rareâ earth oxides. Nature. 2004; 430: 761 â 764.
dc.identifier.citedreferenceKaneko M, Yu JD, Masuno A, et al. Glass formation in LaO 3/2 â TiO 2 binary system by containerless processing. J Am Ceram Soc. 2012; 95: 79 â 81.
dc.identifier.citedreferenceRosalesâ Sosa GA, Masuno A, Higo Y, et al. High elastic moduli of a 54Al 2 O 3 â 46Ta 2 O 5 glass fabricated via containerless processing. Sci Rep. 2015; 5: 15233.
dc.identifier.citedreferenceWatanabe Y, Masuno A, Inoue H. Glass formation of rare earth aluminates by containerless processing. J Nonâ Cryst Solids. 2012; 358: 3563 â 3566.
dc.identifier.citedreferenceWeber R, Sen S, Youngman RE, Hart RT, Benmore CJ. Structure of high alumina content Al 2 O 3 â SiO 2 composition glasses. J Phys Chem B. 2008; 112: 16726 â 16733.
dc.identifier.citedreferenceYoshimoto K, Masuno A, Inoue H, Watanabe Y. Transparent and high refractive index La 2 O 3 â WO 3 glass prepared using containerless processing. J Am Ceram Soc. 2012; 95: 3501 â 3504.
dc.identifier.citedreferenceMasuno A, Inoue H, Yu J, Arai Y. Refractive index dispersion, optical transmittance, and Raman scattering of BaTi 2 O 5 glass. J Appl Phys. 2010; 108: 063520.
dc.identifier.citedreferenceRosalesâ Sosa GA, Masuno A, Higo Y, Inoue H. Crackâ resistant Al 2 O 3 â SiO 2 glasses. Sci Rep. 2016; 6: 23620.
dc.identifier.citedreferenceWeber JKR, Tamalonis A, Benmore CJ, et al. Aerodynamic levitator for in situ xâ ray structure measurements on high temperature and molten nuclear fuel materials. Rev Sci Instrum. 2016; 87: 073902.
dc.identifier.citedreferenceMauro NA, Vogt AJ, Derendorf KS, et al. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source. Rev Sci Instrum. 2016; 87: 073902.
dc.identifier.citedreferenceMauro JC, Tandia A, Vargheese KD, Mauro YHZ, Smedskjaer MM. Accelerating the design of functional glasses through modeling. Chem Mater. 2016; 28: 4267 â 4277.
dc.identifier.citedreferenceLi N, Ching Wâ Y. Structural, electronic and optical properties of a large random network model of amorphous SiO 2 glass. J Nonâ Cryst Solids. 2014; 383: 28 â 32.
dc.identifier.citedreferenceHenderson GS, Calas G, Stebbins JF. The structure of silicate glasses and melts. Elements. 2006; 2: 269 â 273.
dc.identifier.citedreferenceBenoit M, Ispas S, Jund P, Jullien R. Model of silica glass from combined classical and ab initio molecularâ dynamics simulations. Eur Phys J Bâ Condens Matter Complex Syst. 2000; 13: 631 â 636.
dc.identifier.citedreferenceMcGreevy R, Pusztai L. Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol Simul. 1988; 1: 359 â 367.
dc.identifier.citedreferencePandey A, Biswas P, Drabold DA. Inversion of diffraction data for amorphous materials. Sci Rep. 2016; 6: 33731.
dc.identifier.citedreferenceKübel C, Voigt A, Schoenmakers R, et al. Recent advances in electron tomography: TEM and HAADFâ STEM tomography for materials science and semiconductor applications. Microsc Microanal. 2005; 11: 378 â 400.
dc.identifier.citedreferenceHuang PY, Kurasch S, Srivastava A, et al. Direct imaging of a twoâ dimensional silica glass on graphene. Nano Lett. 2012; 12: 1081 â 1086.
dc.identifier.citedreferenceDeville S, Stevenson AJ. Mapping ceramics research and its evolution. J Am Ceram Soc. 2015; 98: 2324 â 2332.
dc.identifier.citedreferencehttp://www-unix.ecs.umass.edu/~jakus/nsf/nsf.ceramics.report6.pdf. Accessed September 12, 2016
dc.identifier.citedreferenceRohrer GS, Affatigato M, Backhaus M, et al. Challenges in ceramic science: a report from the workshop on emerging research areas in ceramic science. J Am Ceram Soc. 2012; 95: 3699 â 3712.
dc.identifier.citedreferenceInnovation in Industry. Catch the wave: the long cycles of industrial innovation are becoming shorter. Economist. February 18, 1999 www.economist.com/node/186628, Accessed January 9, 2015.
dc.identifier.citedreferenceHargroves K, Smith MH. The Natural Advantage of Nations: Business Opportunities, Innovation and Governance in the 21st Century. London: Earthscan; 2005.
dc.identifier.citedreferencePollock TM, Allison JE, Backman DG, et al. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security. Washington, DC: National Academy of Sciences; 2008.
dc.identifier.citedreferenceRondinelli JM, Poeppelmeier KR, Zunger A. Research update: towards designed functionalities in oxideâ based electronic materials. APL Mater. 2015; 3: 080702.
dc.identifier.citedreferenceWang Y, Richards WD, Ong SP, et al. Design principles for solidâ state lithium superionic conductors. Nat Mater. 2015; 14: 1026.
dc.identifier.citedreferenceLi B, Osada M, Ozawa TC, et al. Engineered interfaces of artificial perovskite oxide superlattices via nanosheet deposition process. ACS Nano. 2010; 4: 6673 â 6680.
dc.identifier.citedreferenceLi B, Osada M, Ebina Y, Ueda S, Sasaki T. Coexistence of magnetic order and ferroelectricity at 2D nanosheet interfaces. J Am Chem Soc. 2016; 138: 7621 â 7625.
dc.identifier.citedreferenceWang Y, Wang Y, Breed DR, et al. Colloids with valence and specific directional bonding. Nature. 2012; 491: 51 â 55.
dc.identifier.citedreferenceAuyeung E, Li T, Senesi AJ, et al. DNAâ mediated nanoparticle crystallization into Wulff polyhedral. Nature. 2014; 505: 73.
dc.identifier.citedreferenceChaudhary K, Chen Q, Juarez JJ, Granick S, Lewis JA. Janus colloidal matchsticks. J Am Chem Soc. 2012; 134: 12901 â 12903.
dc.identifier.citedreferencePlunkett K, Mohraz A, Lewis JA, Moore JS. Lightâ regulated electrostatic interactions in colloidal suspensions. J Am Chem Soc. 2005; 127: 14574 â 14575.
dc.identifier.citedreferenceChaudhary K, Juarez J, Chen Q, Granick S, Lewis JA. Reconfigurable assemblies of Janus rods in AC electric fields. Soft Matter. 2014; 10: 1320 â 1324.
dc.identifier.citedreferenceGangwal S, Cayre OJ, Velev OD. Dielectrophoretic assembly of metallodielectric Janus particles in AC fields. Langmuir. 2008; 24: 13312 â 13320.
dc.identifier.citedreferencePoterala SF, Meyer RJ, Messing GL. Lowâ field dynamic magnetic alignment and templated grain growth of diamagnetic PMNâ PT ceramics. J Mater Res. 2013; 28: 2960 â 2969.
dc.identifier.citedreferenceSakka Y, Suzuki TS, Uchikoshi T. Fabrication and some properties of textured aluminaâ related compounds by colloidal processing in highâ magnetic field and sintering. J Eur Ceram Soc. 2008; 28: 935 â 942.
dc.identifier.citedreferenceCesarano J III, Calvert P. Freeforming Objects with Lowâ Binder Slurry. U.S. Patent 6,027,326, 2000.
dc.identifier.citedreferenceCesarano J III, Segalman R, Calvert P. Robocasting provides moldless fabrication from slurry deposition. Ceram Ind. 1998; 148: 94.
dc.identifier.citedreferenceSmay JE, Cesarano J, Lewis JA. Colloidal inks for directed assembly of 3â D periodic structures. Langmuir. 2002; 18: 5429 â 5437.
dc.identifier.citedreferenceEckel ZC, Zhou C, Martin JH, Jacobsen AJ, Carter WB, Schaedler TA. Additive manufacturing of polymerâ derived ceramics. Science. 2016; 351: 58 â 62.
dc.identifier.citedreferenceHalloran JW. Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Annu Rev Mater Res. 2016; 46: 19 â 40.
dc.identifier.citedreferenceMaloney KJ, Roper CS, Jacobsen AJ, Carter WB, Valdevit L, Schaedler TA. Microlattices as architected thin films: analysis of mechanical properties and high strain elastic recovery. APL Mater. 2013; 1: 022106.
dc.identifier.citedreferenceMeza LR, Das S, Greer JR. Strong, lightweight, and recoverable threeâ dimensional ceramic nanolattices. Science. 2014; 345: 1322 â 1326.
dc.identifier.citedreferenceZanchetta E, Cattaldo M, Franchin G, et al. Stereolithography of SiOC ceramic microcomponents. Adv Mater. 2016; 28: 370 â 376.
dc.identifier.citedreferenceZheng X, Lee H, Weisgraber TH, et al. Ultralight, ultrastiff mechanical metamaterials. Science. 2014; 344: 1373.
dc.identifier.citedreferenceSun K, Wei Tâ S, Ahn BY, Seo JY, Dillon SJ, Lewis JA. 3D printing of interdigitated Liâ ion microbattery architectures. Adv Mater. 2013; 25: 4539.
dc.identifier.citedreferenceMohraz A, Weeks ER, Lewis JA. Structure and dynamics of biphasic colloidal mixtures. Phys Rev E. 2008; 77: 060403.
dc.identifier.citedreferenceOber TJ, Foresti D, Lewis JA. Active mixing of complex fluids at the microscale. Proc Natl Acad Sci. 2015; 12: 12293 â 12298.
dc.identifier.citedreferenceHardin JO, Ober TJ, Valentine AD, Lewis JA. Microfluidic printheads for multiâ material 3D printing of viscoelastic inks. Adv Mater. 2015; 27: 3279 â 3284.
dc.identifier.citedreferenceBauer J, Hengsbach S, Tesari I, Schwaiger R, Kraft O. Highâ strength cellular ceramic composites with 3D microarchitecture. Proc Natl Acad Sci. 2014; 111: 2453 â 2458.
dc.identifier.citedreferenceZocca A, Colombo P, Gomes CM, Günster J. Additive manufacturing of ceramics: issues, potentialities, and opportunities. J Am Ceram Soc. 2015; 98: 1983 â 2001.
dc.identifier.citedreferenceKähäri H, Teirikangas M, Juuti J, Jantunen H. Dielectric properties of lithium molybdate ceramic fabricated at room temperature. J Am Ceram Soc. 2014; 97: 3378 â 3379.
dc.identifier.citedreferenceGuo J, Guo H, Baker A, et al. Cold sintering: a paradigm shift for processing and integration of ceramics. Angew Chem Int Ed. 2016; 55: 11457 â 11461.
dc.identifier.citedreferenceGuo J, Berbano SS, Guo H, Baker AL, Lanagan MT, Randall CA. Cold sintering process of composites: bridging the processing gap of ceramics and polymers. Adv Func Mater. 2016; 26: 7115 â 7121.
dc.identifier.citedreferenceColombo P. In praise of pores. Science. 2008; 322: 381 â 383.
dc.identifier.citedreferenceBurke K. Perspective on density functional theory. J Chem Phys. 2012; 136: 1590901.
dc.identifier.citedreferenceCalderon CE, Plata JJ, Toher C, et al. The AFLOW standard for highâ throughput materials science calculations. Comput Mater Sci. 2015; 108 [Part A]: 233 â 238.
dc.identifier.citedreferencevan Duin ACT, Dasgupta S, Lorant F, Goddard WA III. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001; 105: 9396 â 9409.
dc.identifier.citedreferenceFocus Section on Semiâ Empirical Interatomic Potentials. In: Muser MH, eds. Modelling and Simulation in Materials Science and Engineering. Philadelphia, PA: IOP; 2015: 23.
dc.identifier.citedreferenceTrott CR, Hammond SD, Thompson AP. SNAP: strong scaling high fidelity molecular dynamics simulations on leadershipâ class computing platforms. Int Supercomputing Conf. 2014; 19â 34.
dc.identifier.citedreferenceBrommer P, Kiselev A, Schopf D, Beck P, Roth J, Trebin Hâ R. Classical interaction potentials for diverse materials from ab initio data: a review of potfit. Modell Simul Mater Sci Eng. 2015; 23: 074002.
dc.identifier.citedreferenceThompson P, Swiler LP, Trott CR, Foiles SM, Tucker GJ. Spectral neighbor analysis method for automated generation of quantumâ accurate interatomic potentials. J Comput Phys. 2015; 285: 316.
dc.identifier.citedreferenceSteinbach I. Phaseâ field model for microstructure evolution at the mesoscopic scale. Annu Rev Mater Res. 2013; 43: 89 â 107.
dc.identifier.citedreferenceHolm EA, Battaile CC. The computer simulation of microstructural evolution. J Met. 2001; 53: 20 â 23.
dc.identifier.citedreferenceDimiduk DM. Microstructureâ Propertyâ Design Relationships in the Simulation Era: An Introduction. In: Dimiduk D, Ghosh S, eds. Computational Methods for Microstructureâ Property Relationships. US: Springer; 2010.
dc.identifier.citedreferenceThe Minerals, Metals & Materials Society (TMS). Modeling Across Scales: A Roadmapping Study for Connecting Materials Models and Simulations Across Length and Time Scales. Warrendale, PA: TMS; 2015.
dc.identifier.citedreferenceSchmalzried H. Chemical Kinetics of Solids. Weinheim: VCH; 1995.
dc.identifier.citedreferenceMaier J. Physical Chemistry of Ionic Materials: Ions and Electrons in Solids. Weinheim: Wiley Verlag; 2004.
dc.identifier.citedreferenceMebane DS, De Souza RA. A generalized spaceâ charge theory for extended defects in oxygenâ ion conducting electrolytes: from dilute to concentrated solid solutions. Energy Environ Sci. 2015; 8: 2935 â 2940.
dc.identifier.citedreferenceMo K, Zhau Z, Miao Y, et al. Synchrotron study on load partitioning between ferrite/martensite and nanoparticles of a 9Cr ODS steel. J Nucl Mater. 2014; 445: 209 â 217.
dc.identifier.citedreferenceSun L, Marrocchelli D, Yildiz B. Edge dislocation slows down oxide ion diffusion in doped CeO 2  by segregation of charged defects. Nat Commun. 2015; 6: 6294.
dc.identifier.citedreferenceMaier J. Crystalline solid electrolytes and defect chemistry: some novel thermodynamic and kinetic results. Solid State Ionics. 1996; 86â 88: 55 â 57.
dc.identifier.citedreferenceAlonso JL. Phase diagram and influence of defects in the double perovskites. Phys Rev B. 2003; 76: 214423.
dc.identifier.citedreferenceKorobko R, Patlolla A, Kossoy A, et al. Giant electrostriction in Gdâ doped ceria. Adv Mater. 2012; 24: 5857 â 5861.
dc.identifier.citedreferenceDe Souza RA. Introduction to the special issue on defects and transport in complex oxides. Comput Mater Sci. 2015; 103: 205.
dc.identifier.citedreferencePramanick D, Damjanovic D, Daniels JE, Nino JC, Jones JL. Origins of electroâ mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading. J Am Ceram Soc. 2011; 94: 293 â 309.
dc.identifier.citedreferenceMarincel DM, Zhang K, Jesse S, et al. Influence of a single grain boundary on domain wall motion in ferroelectrics. Adv Func Mater. 2014; 24: 1409 â 1417.
dc.identifier.citedreferenceBintachitt P, Jesse S, Damjanovic D, et al. Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics. Proc Natl Acad Sci. 2010; 107: 7219 â 7224.
dc.identifier.citedreferenceDedon LR, Saremi S, Chen ZH, et al. Nonstoichiometry, structure, and properties of BiFeO 3 films. Chem Mater. 2016; 28: 5952 â 5961.
dc.identifier.citedreferenceRost CM, Sachet E, Borman T, et al. Entropyâ stabilized oxides. Nat Commun. 2015; 6: 8485.
dc.identifier.citedreferenceKoumoto K, Funahashi R, Guilmeau E, et al. Thermoelelctric ceramics for energy harvesting. J Am Ceram Soc. 2012; 96: 1 â 23.
dc.identifier.citedreferenceBackhausâ Ricoult M, Rustad J, Moore L, Smith C, Brown J. Semiconducting large bandgap oxides as potential thermoelectric materials for highâ temperature power generation? Appl Phys A. 2014; 116: 433 â 470.
dc.identifier.citedreferenceBiÅ¡kup N, Salafranca J, Mehta V, et al. Insulating ferromagnetic LaCoO 3â δ films: a phase induced by ordering of oxygen vacancies. Phys Rev Lett. 2014; 112: 087202 â 087205.
dc.identifier.citedreferenceYang JJ, Strukov DB, Stewart DR. Memristive devices for computing. Nat Nanotechnol. 2013; 8: 13 â 24.
dc.identifier.citedreferenceMesserschmitt F, Kubicek M, Schweiger S, Rupp JL. Memristor kinetics and diffusion characteristics for mixed anionicâ electronic SrTiO 3â δ bits: the memristorâ based cottrell analysis connecting material to device performance. Adv Func Mater. 2014; 24: 7448 â 7460.
dc.identifier.citedreferenceBreckenfeld E, Bronn N, Karthik J, et al. Effect of growth induced (non) stoichiometry on interfacial conductance in LaAlO 3 /SrTiO 3. Phys Rev Lett. 2013; 110: 196804.
dc.identifier.citedreferenceWarusawithana MP, Richter C, Mundy JA, et al. LaAlO 3 stoichiometry is key to electron liquid formation at LaAlO 3 /SrTiO 3 interfaces. Nat Commun. 2013; 4: 2351.
dc.identifier.citedreferenceSato HK, Bell C, Hikita Y, Hwang HY. Stoichiometry control of the electronic properties of the LaAlO 3 /SrTiO 3 heterointerface. Appl Phys Lett. 2013; 102: 251602.
dc.identifier.citedreferenceBreckenfeld E, Bronn N, Mason N, Martin LW. Tunability of conduction at the LaAlO 3 /SrTiO 3 heterointerface: thickness and compositional studies. Appl Phys Lett. 2014; 105: 121610.
dc.identifier.citedreferenceKalinin SV, Borisevich A, Fong D. Beyond condensed matter physics on the nanoscale: the tole of ionic and electrochemical phenomena in the physical functioanlities of oxide materials. ACS Nano. 2012; 6: 10423 â 10437.
dc.identifier.citedreferenceBreckenfeld E, Shah AB, Martin LW. Strain evolution in nonâ stoichiometric heteroepitaxial thinâ film perovskites. J Mater Chem C. 2013; 1: 8052 â 8059.
dc.identifier.citedreferenceMinato T, Kawai M, Kim Y. Creation of single oxygen vacancy on titanium dioxide surface. J Mater Res. 2012; 27: 2237 â 2240.
dc.identifier.citedreferenceAdepalli KK, Kelsch M, Merkle R, Maier J. Influence of line defects on the electrical properties of single crystal TiO 2. Adv Func Mater. 2013; 23: 1798 â 1806.
dc.identifier.citedreferenceMorozovska AN, Eliseev EA, Tagantsev AK, Bravina SL, Chen Lâ Q, Kalinin SV. Thermodynamics of electromechanically coupled mixed ionicâ electronic conductors: deformation potential, Vegard strains, and flexoelectric effect. Phys Rev B. 2011; 83: 195313.
dc.identifier.citedreferenceDamodaran AR, Breckenfeld E, Chen Z, Lee S, Martin LW. Enhancement of ferroelectric Curie temperature in BaTiO3 films via strainâ induced defect dipole alignment. Adv Mater. 2014; 26: 6341 â 6347.
dc.identifier.citedreferenceWang Z, Loon A, Subramanian A, et al. Transition from reconstruction toward thin film on the (110) surface of strontium titanate. Nano Lett. 2016; 16: 2407 â 2412.
dc.identifier.citedreferenceAtomic Simulation Environment. https://wiki.fysik.dtu.dk/ase, Accessed October 14, 2016.
dc.identifier.citedreferenceLee W, Han JW, Chen Y, Cai Z, Yildiz B. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J Am Chem Soc. 2013; 135: 7909 â 7925.
dc.identifier.citedreferenceBackhausâ Ricoult M. Interface chemistry in LSMâ YSZ composite SOFC cathodes. Solid State Ionics. 2006; 177: 2195 â 2200.
dc.identifier.citedreferenceTsvetkov N, Lu Q, Sun L, Crumlin E, Yildiz B. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nat Mater. 2016; 15: 1010 â 1016.
dc.identifier.citedreferenceJacobs R, Booske J, Morgan D. Understanding and controlling the work function of perovskite oxides using density functional theory. Adv Func Mater. 2016; 10: 1002.
dc.identifier.citedreferenceFan Y, Osetskly YN, Yip S, Yildiz B. Mapping strain rate dependence of dislocationâ defect interactions by atomistic simulations. Proc Natl Acad Sci. 2013; 110: 17756 â 17761.
dc.identifier.citedreferenceCarter EA. Challenges in modeling materials properties without experimental input. Science. 2008; 321: 800.
dc.identifier.citedreferenceKnauth P. Inorganic solid Li ion conductors: an overview. Solid State Ionics. 2009; 180: 911 â 916.
dc.identifier.citedreferenceSaremi S, Xu R, Dedon LR, et al. Enhanced electrical resistivity and properties via ion bombardment of ferroelectric thin films. Adv Mater. 2016; 10: 1002.
dc.identifier.citedreferenceSata N, Eberman K, Eberl K, Maier J. Mesoscopic fast ion conduction in nanometreâ scale planar heterostructures. Nature. 2000; 408: 946 â 949.
dc.identifier.citedreferenceSang X, LeBeau JM. Revolving scanning transmission electron microscopy: correcting sample drift distortions without prior knowledge. Ultramicroscopy. 2014; 138: 28 â 35.
dc.identifier.citedreferenceYankovich AB, Berkels B, Dahmen W, et al. Picometreâ precision analysis of scanning transmission electron microscopy images of platinum catalysis. Nat Commun. 2014; 5: 4155.
dc.identifier.citedreferenceLeBeau JM, Findlay SD, Allen LJ, Stemmer S. Standardless atom counting in scanning transmission electron micrscopy. Nano Lett. 2010; 10: 4405 â 4408.
dc.identifier.citedreferenceMuller DA, Kourkoutis LF, Murfitt M, et al. Atomicâ scale chemical imaging of composition and bonding by aberrationâ corrected micrscopy. Science. 2008; 319: 1073 â 1076.
dc.identifier.citedreferenceVarela M, Findlay SD, Lupini AR, et al. Spectroscopic imaging of single atoms within a bulk solid. Phys Rev Lett. 2004; 92: 95502.
dc.identifier.citedreferenceAllard LF, Bigelow WC, Joseâ Yacaman M, Nackashi DP, Damiano J, Mick SE. A new MEMSâ based system for ultraâ highâ resolution imaging at elevated temperatures. Microsc Res Tech. 2009; 72: 208 â 215.
dc.identifier.citedreferenceBaier S, Wittstock A, Damsgaard CD, et al. Influence of gas atomospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychography. RSC Adv. 2016; 6: 83031 â 83043.
dc.identifier.citedreferenceBackhausâ Ricoult M, Adib K, Clair TS, Luerssen B, Gregoratti L, Barinov A. Inâ situ study of operating SOFC LSM/YSZ cathodes under polarization by photoelectron microscopy. Solid State Ionics. 2008; 179: 891 â 895.
dc.identifier.citedreferenceBackhausâ Ricoult M, Work K, Adib K, Gregoratti L, Amati M. Impact of surface chemistry on the electrochemical performance of perovskite cathodes. ECS Trans. 2014; 61: 3 â 21.
dc.identifier.citedreferenceBackhausâ Ricoult M, Adib K, Work K, et al. Inâ situ scanning photoelectron microscopy study of operating (La, Sr)FeO3â based NOxâ sensing surfaces. Solid State Ionics. 2012; 225: 716 â 726.
dc.identifier.citedreferenceCastell MR. Scanning tunneling microscopy of reconstructions of the SrTiO 3 (001) surface. Surf Sci. 2002; 505: 1 â 13.
dc.identifier.citedreferenceZhou MJ, Yan L, Fu EG, et al. Phase transformations and defect clusters in single crystal SrTiO 2 irradiated at different temperatures. J Nucl Mater. 2013; 442: 143 â 147.
dc.identifier.citedreferenceLee Câ H, Orloff ND, Birol T, et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature. 2013; 502: 532 â 536.
dc.identifier.citedreferenceZhou YC, Hashida T. Delamination cracking in thermal barrier coating system. J Eng Gas Turbines Power. 2002; 124: 922 â 930.
dc.identifier.citedreferenceLee S, Seo H, Lucovsky G, Fleming LB, Ulrich MD, Lüning J. Bulk defects in nanoâ crystalline and in nonâ crystalline HfO 2 â based thin film dielectrics. Thin Solid Films. 2008; 517: 437 â 440.
dc.identifier.citedreferenceFuelcells. https://fuelcellsworks.com/archives/2012/03/30/world-record-julich-fuel-cell-passes-40000-hour-mark/, Accessed December 8, 2016.
dc.identifier.citedreferenceMemristor. https://en.wikipedia.org/w/index.php?title=Special:CiteThisPage&page=Memristor&id=766832362. Accessed December 8, 2016.
dc.identifier.citedreferenceCellular technology. https://madeby.google.com/phone/, Accessed December 8, 2016.
dc.identifier.citedreferenceTurbine blades. http://www.supergenple.net/themes/theme2/turbines.png. Accessed December 8, 2016.
dc.identifier.citedreferenceElectron gun. http://www.rbdinstruments.com/blog/tag/filament/, Accessed December 8, 2016.
dc.identifier.citedreferenceColeman JN, Lotya M, O’Neill A, et al. Twoâ dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011; 331: 568 â 571.
dc.identifier.citedreferenceQian H, Luo J. Vanadiaâ based equilibriumâ thickness amorphous films on anatase (101) surfaces. Appl Phys Lett. 2007; 91: 061909 doi: 10.1063/1.2768315.
dc.identifier.citedreferenceDillon SJ, Tang M, Carter WC, Harmer MP. Complexion: a new concept for kinetic engineering in materials science. Acta Mater. 2007; 55: 6208 â 6218
dc.identifier.citedreferenceTreacy MMJ, Rice SB, Jacobson AJ, Lewandowski JT. Electronâ microscopy study of delimitation in dispersions of the perovskiteâ related layered phases of KCa 2 Na Nâ 3 Nb N O 3N+1 â evidence for singleâ layer formation. Chem Mater. 1990; 2: 279 â 286.
dc.identifier.citedreferenceNicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN. Liquid exfoliation of layered materials. Science. 2013; 340: 1226419.
dc.identifier.citedreferenceLuckham PF, Rossi S. The colloidal and rheological properties of bentonite suspensions. Adv Coll Interface Sci. 1999; 82: 43 â 92.
dc.identifier.citedreferenceMa R, Sasaki T. Nanosheets of oxides and hydroxides: ultimate 2D chargeâ bearing functional crystallites. Adv Mater. 2010; 22: 5082 â 5104.
dc.identifier.citedreferenceOsada M, Sasaki T. Twoâ dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv Mater. 2012; 24: 210 â 228.
dc.identifier.citedreferenceGolberg D, Bando Y, Huang Y, et al. Boron nitride nanotubes and nanosheets. ACS Nano. 2010; 4: 2979 â 2993.
dc.identifier.citedreferenceNaguib M, Mashtalir O, Carle J, et al. Twoâ dimensional transition metal carbides. ACS Nano. 2012; 6: 1322 â 1331.
dc.identifier.citedreferenceCantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP. Grain boundary complexions. Acta Mater. 2014; 62: 1 â 48.
dc.identifier.citedreferenceLuo J, Chiang Yâ M. Wetting and prewetting on ceramic surfaces. Annu Rev Mater Res. 2008; 38: 227 â 249.
dc.identifier.citedreferenceBaram M, Chatain D, Kaplan WD. Nanometerâ thick equilibrium films: the interface between thermodynamics and atomistics. Science. 2011; 332: 206 â 209.
dc.identifier.citedreferenceKim S, Sinai O, Lee Câ W, Rappe AM. Controlling oxide surface dipole and reactivity with intrinsic nonstoichiometric epitaxial reconstructions. Phys Rev B. 2015; 92: 235431.
dc.identifier.citedreferenceZhu Y, Salvador PA, Rohrer GS. Controlling the relative areas of photocathodic and photoanodic terraces on the SrTiO 3 (111) surface. Chem Mater. 2016; 28: 5155 â 5162.
dc.identifier.citedreferenceLuo J. Developing interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions. J Am Ceram Soc. 2012; 95: 2358 â 2371.
dc.identifier.citedreferenceHarmer MP. Interfacial kinetic engineering: how far have we come since Kingery’s inaugural Sosman address? J Am Ceram Soc. 2010; 93: 301 â 317.
dc.identifier.citedreferenceLuo J. Stabilization of nanoscale quasiâ liquid interfacial films in inorganic materials: a review and critical assessment. Crit Rev Solid State Mater Sci. 2007; 32: 67 â 109.
dc.identifier.citedreferenceOrum A, Yildizhan MM, Sezen M, et al. Transmission electron microscopy of topochemical conversion interface between La 2 Ti 2 O 7 reactive template and perovskite product Li 0.16 La 0.62 TiO 3 electrolyte. Solid State Ionics. 2016; 296: 78 â 84.
dc.identifier.citedreferenceSimon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science. 2014; 343: 1210 â 1211.
dc.identifier.citedreferenceGuo HZ, Baker AL, Guo J, Randall CA. Cold sintering process: a novel technique for lowâ temperature ceramic processing of ferroelectrics. J Am Ceram Soc. 2016; 99: 3489 â 3507.
dc.identifier.citedreferenceZou X, Goswami A, Asefa T. Efficient noble metalâ free (electro) catalysis of water and alcohol oxidations by zincâ cobalt layered double hydroxide. J Am Chem Soc. 2013; 135: 17242 â 17245.
dc.identifier.citedreferenceCantwell PR, Ma S, Bojarski SA, Rohrer GS, Harmer MP. Expanding timeâ temperatureâ transformation (TTT) diagrams to interfaces: a new approach for grain boundary engineering. Acta Mater. 2016; 106: 78 â 86.
dc.identifier.citedreferenceXiao X, Song H, Lin S, et al. Scalable saltâ templated synthesis of twoâ dimensional transition metal oxides. Nat Commun. 2016; 7: 11296.
dc.identifier.citedreferenceOhtomo A, Hwang HY. A highâ mobility electron gas at the LaAlO 3 /SrTiO 3 heterointerface. Nature. 2004; 427: 423 â 426.
dc.identifier.citedreferenceGeim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007; 6: 183 â 191.
dc.identifier.citedreferenceBajaj S, Wang H, Doak JW, Wolverton C, Snyder GJ. Calculation of dopant solubilities and phase diagrams of Xâ Pbâ Se (X = Br, Na) limited to defects with localized charge. J Mater Chem C. 2016; 4: 1769 â 1775.
dc.identifier.citedreferenceArmiento R, Kozinsky B, Fornari M, Ceder G. Screening for highâ performance piezoelectrics using highâ throughput density functional theory. Phys Rev B. 2011; 84: 014103.
dc.identifier.citedreferenceJain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013; 1: 011002.
dc.identifier.citedreferenceTang M, Carter WC, Cannon RM. Diffuse interface model for structural transitions of grain boundaries. Phys Rev B. 2006; 73: 14.
dc.identifier.citedreferenceAlloy Theoretic Automated Toolkit (ATAT) Home Page, https://www.brown.edu/Departments/Engineering/Labs/avdw/atat/, accessed 10/14/2016.
dc.identifier.citedreferenceObject Oriented Finite Element Analysis for material microstructures. http://www.ctcms.nist.gov/oof/oof3d/, Accessed October 14, 2016.
dc.identifier.citedreferenceMOOSE FrameworkOpen Source Multiphysics, http://mooseframework.org, Accessed October 14, 2016.
dc.identifier.citedreferenceDakota: Algorithms for design exploration and simulation credibility, https://dakota.sandia.gov/content/packages, Accessed October 14, 2016.
dc.identifier.citedreferenceArmand M, Tarascon JM. Building better batteries. Nature. 2008; 451: 652 â 657.
dc.identifier.citedreferenceLukatskaya MR, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun. 2016; 7: 12647 â 47.
dc.identifier.citedreferenceLei W, Mochalin VN, Liu D, Qin S, Gogotsi Y, Chen Y. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through oneâ step exfoliation and functionalization. Nat Commun. 2015; 6: 8849.
dc.identifier.citedreferenceSathe BR, Zou X, Asefa T. Metalâ free Bâ doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction. Catal Sci Technol. 2014; 4: 2023 â 2030.
dc.identifier.citedreferenceKnaster J, Moeslang A, Muroga T. Materials research for fusion. Nat Phys. 2016; 12: 424 â 434.
dc.identifier.citedreferenceUnpublished image, courtesy of Frank W. Zok.
dc.identifier.citedreferenceKeller T. GE Reports. http://www.gereports.com/post/119035992715/these-space-age-ceramics-will-be-your-jet-engines/, 2015. Accessed December 31, 2016.
dc.identifier.citedreferenceUnpublished image, courtesy of John Shaw.
dc.identifier.citedreferenceEllerby D, Beckman S, Irby E, Johnson SM, Gasch M, Gusman M. Materials Development and Characterization of HfB 2 /SiC Ceramics For Use In Sharp Leading Edge Applications. Proceedings of the 2004 Joint Army Navy NASA Air Force Conference.
dc.identifier.citedreferenceVan Wie DM, Drewry DG, King DE, Hudson CM. The hypersonic environment: required operating conditions and design challenges. J Mater Sci. 2004; 39: 5915 â 5924.
dc.identifier.citedreferencePaul A, Jayaseelan DD, Venugopal S, et al. UHTC composites for hypersonic applications. Am Ceram Soc Bull. 2012; 91: 22 â 29.
dc.identifier.citedreferenceMonteverde F, Savino R, Fumo MS, Di Maso A. Plasma wind tunnel testing of ultraâ high temperature ZrB 2 â SiC composites under hypersonic reâ entry conditions. J Eur Ceram Soc. 2010; 30: 2313 â 2321.
dc.identifier.citedreferenceSquire TH, Marschall J. Material property requirements for analysis and design of UHTC components in hypersonic applications. J Eur Ceram Soc. 2010; 30: 2239 â 2251.
dc.identifier.citedreferenceBongiorno A, Fröst CJ, Kalia RK, et al. A perspective on modeling materials in extreme environments: oxidation of ultrahighâ temperature ceramics. MRS Bull. 2006; 31: 410 â 418.
dc.identifier.citedreferenceMarschall J, Chamberlain A, Crunkleton D, Rogers B. Catalytic atom recombination on ZrB 2 /SiC and HfB 2 /SiC ultrahighâ temperature ceramic composites. J Spacecr Rockets. 2004; 41.
dc.identifier.citedreferenceFahrenholtz WG, Hilmas GE. Refractory diborides of zirconium and hafnium. J Am Ceram Soc. 2007; 90: 1347 â 1364.
dc.identifier.citedreferenceMarshall DB, Cox BN. Integral textile ceramic structures. Annu Rev Mater Res. 2008; 38: 425 â 443.
dc.identifier.citedreferenceLevine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA. Evaluation of ultraâ high temperature ceramics for aeropropulsion use. J Eur Ceram Soc. 2002; 22: 2757 â 2767.
dc.identifier.citedreferenceFahrenholtz WG. Thermodynamic analysis of ZrB 2 â SiC oxidation: formation of a SiCâ depleted region. J Am Ceram Soc. 2007; 90: 143 â 148.
dc.identifier.citedreferenceGasch M, Johnson S. Physical characterization and arcjet oxidation of hafniumâ based ultra high temperature ceramics fabricated by hot pressing and fieldâ assisted sintering. J Eur Ceram Soc. 2010; 30: 2337 â 2344.
dc.identifier.citedreferencePoerschke DL, Novak MD, Abdulâ Jabbar NM, Novak MD, Krämer S, Levi CG. Selective active oxidation in hafnium borideâ silicon carbide composites above 2000°C. J Eur Ceram Soc. 2016; 36: 3697 â 3707.
dc.identifier.citedreferencePadture NP. Advanced structural ceramics in aerospace propulsion. Nat Mater. 2016; 15: 804 â 809.
dc.identifier.citedreferenceReed RC. The Superalloys: Fundamentals and Applications. New York: Cambridge University Press; 2006: 372.
dc.identifier.citedreferencePerepezko JH. The hotter the engine, the better. Science. 2009; 326: 1068 â 1069.
dc.identifier.citedreferencePollock TM, Dibbern J, Tsunekane M, Zhu J, Suzuki A. New coâ based γâ γâ highâ temperature alloys. J Met. 2010; 62: 58 â 63.
dc.identifier.citedreferenceZok FW. Ceramicâ matrix composites enable revolutionary gains in turbine engine efficiency. Am Ceram Soc Bull. 2016; 95: 22 â 28.
dc.identifier.citedreferenceEvans AG, Clarke DR, Levi CG. The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc. 2008; 28: 1405 â 1419.
dc.identifier.citedreferenceLee KN, Fox DS, Bansal NP. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si 3 N 4 ceramics. J Eur Ceram Soc. 2005; 25: 1705 â 1715.
dc.identifier.citedreferenceLevi CG, Hutchinson JW, Vidalâ Setif Mâ H, Johnson CA. Environmental degradation of TBCs by molten deposits. MRS Bull. 2012; 37: 932 â 941.
dc.identifier.citedreferenceJackson RW, Zaleski EM, Hazel BT, Begley MR, Levi CG. Response of molten silicate infiltrated Gd 2 Zr 2 O 7 thermal barrier coatings to temperature gradients. Acta Mater. 2017, in press.
dc.identifier.citedreferencePoerschke DL, Hass DD, Eustis S, Seward GGE, Van Sluytman JS, Levi CG. Stability and CMAS resistance of ytterbiumâ silicate/hafnate TBC/EBCs for SiC Composites. J Am Ceram Soc. 2015; 98: 278 â 286.
dc.identifier.citedreferenceStolzenburg F, Johnson MT, Lee KN, Faber KT. The interaction of calciumâ magnesiumâ aluminosilicate with ytterbium silicate environmental barrier materials. Surf Coat Technol. 2015; 284: 44 â 50.
dc.identifier.citedreferenceZhao HB, Richards BT, Levi CG, Wadley HNG. Molten silicate reactions with plasma sprayed ytterbium silicate coatings. Surf Coat Technol. 2016; 288: 151 â 162.
dc.identifier.citedreferenceLee WE, Gilbert M, Murphy ST, Grimes RW. Opportunities for advanced ceramics and composites in the nuclear sector. J Am Ceram Soc. 2013; 96: 2005 â 2030.
dc.identifier.citedreferenceWirth BD, Nordlund K, Whyte DG, Xu D. Fusion materials modeling: challenges and opportunities. MRS Bull. 2011; 36: 216 â 222.
dc.identifier.citedreferenceVictoria M, Baluc N, Spätig P. Structural materials for fusion reactors. Nucl Fusion. 2001; 41: 1047 â 1053.
dc.identifier.citedreferenceDubrovinskaia N, Dubrovinsky L, Solopova NA, et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci Adv. 2016; 2: 1 â 12.
dc.identifier.citedreferenceLiu X, Chen X, Ma Hâ A, et al. Ultrahard stitching of nanotwinned diamond and cubic boron nitride in C 2 â BN composite. Sci Rep. 2016; 6: 1 â 9.
dc.identifier.citedreferenceCompton BG, Gamble EA, Zok FW. Failure initiation during impact of metal spheres onto ceramic targets. Int J Impact Eng. 2013; 55: 11 â 23.
dc.identifier.citedreferenceSubhash G, Awasthi AP, Kunka C, Jannotti P, DeVries M. In search of amorphizationâ resistant boron carbide. Scripta Mater. 2016; 123: 158 â 162.
dc.identifier.citedreferenceKoumoto K, Wang Y, Zhang R, Kosuga A, Funahashi R. Oxide thermoelectric materials: a nanostructuring approach. Annu Rev Mater Res. 2010; 40: 363 â 394.
dc.identifier.citedreferenceTarascon Jâ M. Solid oxide fuel cells for power generation. Philos Trans: Math, Phys Eng Sci. 2010; 368: 3227 â 3241.
dc.identifier.citedreferenceSinghal SC. Solid oxide fuel cells for power generation. Wiley Interdisc Rev Energy Environ. 2014; 3: 179 â 194.
dc.identifier.citedreferenceKim C, Pilania G, Ramprasad R. From organized highâ throughput data to phenomenological theory using machine learning: the example of dielectric breakdown. Chem Mater. 2016; 28: 1304 â 1311.
dc.identifier.citedreferenceGutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater. 2011; 23: 821 â 842.
dc.identifier.citedreferenceNorman MR. Materials design for new superconductors. Rep Prog Phys. 2016; 79: 1 â 9.
dc.identifier.citedreferenceWadsworth J, Crabtree GW, Hemley RJ. Basic research needs for materials under extreme environments. DOE Office Basic Energy Sci. 2008.
dc.identifier.citedreferenceBegley MR, Hutchinson JW. The Mechanics and Reliability of Films, Coatings and Multilayers. New York, NY: Cambridge University Press; 2016.
dc.identifier.citedreferenceParthasarathy TA, Rapp RA, Opeka M, Kerans RJ. A model for the oxidation of ZrB 2, HfB 2 and TiB 2. Acta Mater. 2007; 55: 5999 â 6010.
dc.identifier.citedreferenceJayaseelan DD, Zapataâ Solvas E, Brown P, Lee WE. In situ formation of oxidation resistant refractory coatings on SiCâ reinforced ZrB 2 ultra high temperature ceramics. J Am Ceram Soc. 2012; 95: 1247 â 1254.
dc.identifier.citedreferenceGrant KM, Krämer S, Löfvader JPA, Levi CG. CMAS degradation of environmental barrier coatings. Surf Coat Technol. 2007; 202: 653 â 657.
dc.identifier.citedreferenceHong Qâ J, Van de Walle A. Prediction of the material with highest known melting point from ab initio molecular dynamics calculations. Phys Rev B. 2015; 92: 1 â 6.
dc.identifier.citedreferenceCedillosâ Barraza O, Manara D, Boboridis K, et al. Investigating the highest melting temperature materials: a laser melting study of the TaCâ HfC system. Sci Rep. 2016; 6: 37962.
dc.identifier.citedreferenceRudy E. Ternary Phase Equilibria in Transition Metalâ Boronâ Carbonâ Silicon Systems. Part V. Compendium of Phase Diagram Data. Technical Report AFMLâ TRâ 65â 2, Part V., Air Force Materials Laboratory, 1969.
dc.identifier.citedreferencePan Y, Zhou P, Peng Y, Du Y, Luo F. A thermodynamic description of the Câ Hfâ Ta system over the whole composition and temperature ranges. CALPHAD: Comput Coupling Phase Diagrams Thermochem. 2016; 53: 1 â 9.
dc.identifier.citedreferenceIvanovskii AL. Mechanical and electronic properties of diborides of transition 3dâ 5d metals from first principles: toward search of novel ultraâ incompressible and superhard materials. Prog Mater Sci. 2012; 57: 184 â 228.
dc.identifier.citedreferenceAlfè D, Gillian MJ, Price GD. The melting curve of iron at the pressures of the Earth’s core from ab initio calculations. Nature. 1999; 401: 462 â 464.
dc.identifier.citedreferenceDuff AI, Davey T, Korbmacher D, et al. Improved method of calculating ab initio highâ temperature thermodynamic properties with application to ZrC. Phys Rev B. 2015; 91: 1 â 8.
dc.identifier.citedreferenceBaldock RJN, Pártay LB, Bartók AP, Payne MC, Csányi G. Determining pressureâ temperature phase diagrams of materials. Phys Rev B. 2016; 93: 1 â 9.
dc.identifier.citedreferenceUshakov SV, Navrotsky A. Experimental approaches to the thermodynamics of ceramics above 1500°C. J Am Ceram Soc. 2012; 95: 1463 â 1482.
dc.identifier.citedreferenceNavrotsky A. Progress and new directions in calorimetry: a 2014 perspective. J Am Ceram Soc. 2014; 97: 3349 â 3359.
dc.identifier.citedreferenceKrogstad JA, Gao Y, Bai J, Wang J, Lipkin DM, Levi CG. In situ diffraction study of the highâ temperature decomposition of tâ â zirconia. J Am Ceram Soc. 2015; 98: 247 â 254.
dc.identifier.citedreferenceSarin P, Yoon W, Jurkschat K, Zschack P, Kriven WM. Quadrupole lamp furnace for high temperature (up to 2050 K) synchrotron powder xray diffraction studies in air in reflection geometry. Rev Sci Instrum. 2006; 77: 1 â 9.
dc.identifier.citedreferenceKarlsdottir SN, Halloran JW. Rapid oxidation characterization of ultraâ high temperature ceramics. J Am Ceram Soc. 2007; 90: 3233 â 3238.
dc.identifier.citedreferenceCarney C, Parthasarathy TA, Cinibulk MK. Separating test artifacts from material behavior in the oxidation studies of HfB 2 â SiC at 2000°C and above. Int J Appl Ceram Technol. 2013; 10: 293 â 300.
dc.identifier.citedreferenceUnpublished image, courtesy of Sergey Ushakov.
dc.identifier.citedreferenceUnpublished images, courtesy of R. Wesley Jackson and Elisa M. Zaleski.
dc.identifier.citedreferenceManara D, Sheindin M, Heinz W, Ronchi C. New techniques for highâ temperature melting measurements in volatile refractory materials via laser surface heating. Rev Sci Instrum. 2008; 79: 1 â 7.
dc.identifier.citedreferenceGasch M, Johnson S, Marschall J. Thermal conductivity characterization of hafnium diborideâ based ultraâ highâ temperature ceramics. J Am Ceram Soc. 2008; 91: 1423 â 1432.
dc.identifier.citedreferenceBlumm J, Opfermann J. Thermophysical properties of silicon carbide green bodies prior to, during and after the sintering process. High Temp/High Press. 2003; 35: 513 â 520.
dc.identifier.citedreferenceHarrington GJK. Effect of Solid Solutions and Second Phases on the Thermal Conductivity of Zirconium Diboride Ceramics. Ph.D. Thesis in Materials Science and Engineering, Missouri University of Science and Technology, 2014.
dc.identifier.citedreferenceSavino R, Fumo MS, Silvestroni L, Sciti D. Arcâ jet testing on HfB 2 and HfCâ based ultraâ high temperature ceramic materials. J Eur Ceram Soc. 2008; 28: 1899 â 1907.
dc.identifier.citedreferenceLarrimbe L, Pettinà M, Nikbin K, et al. High heat flux laser testing of HfB 2 cylinders. J Am Ceram Soc, 2017; 100: 293 â 303.
dc.identifier.citedreferenceSzlufarska I, Ramesh KT, Warner DH. Simulating mechanical behavior of ceramics under extreme conditions. Annu Rev Mater Res. 2013; 43: 131 â 156.
dc.identifier.citedreferenceHaboub A, Bale HA, Nasiatka JR, et al. Tensile testing of materials at high temperatures above 1700°C with in situ synchrotron Xâ ray microâ tomography. Rev Sci Instrum. 2014; 85: 1 â 13.
dc.identifier.citedreferenceBale HA, Haboub A, MacDowell AA, et al. Realâ time quantitative imaging of failure events in materials under load at temperatures above 1,600°C. Nat Mater. 2013; 12: 40 â 46.
dc.identifier.citedreferenceShyam A, Laraâ Curzio E. The doubleâ torsion testing technique for determination of fracture toughness and slow crack growth behavior of materials: a review. J Mater Sci. 2006; 41: 4093 â 4104.
dc.identifier.citedreferenceDwivedi G, Viswanathan V, Sampath S, Shyam A, Laraâ Curzio E. Fracture toughness of plasmaâ sprayed thermal barrier ceramics: influence of processing, microstructure, and thermal aging. J Am Ceram Soc. 2014; 97: 2736 â 2744.
dc.identifier.citedreferenceDonohue EM, Philips NR, Begley MR, Levi CG. Thermal barrier coating toughness: measurement and identification of a bridging mechanism enabled by segmented microstructure. Mater Sci Eng, A. 2013; 564: 324 â 330.
dc.identifier.citedreferenceBassett WA. Diamond anvil cell, 50th birthday. High Press Res. 2009; 29: 163 â 186.
dc.identifier.citedreferenceClark AN, Lesher CE, Jacobsen SD, Sen S. Mechanisms of anomalous compressibility of vitreous silica. Phys Rev B. 2014; 90: 174110.
dc.identifier.citedreferencePettinà M, Biglari F, Heaton A, Brown P, Nikbin K. Modelling damage and creep crack growth in structural ceramics at ultraâ high temperatures. J Eur Ceram Soc. 2014; 34: 2799 â 2805.
dc.identifier.citedreferencePettinà M, Harrison RW, Vandeperre LJ, et al. Diffusionâ based and creep continuum damage modelling of crack formation during high temperature oxidation of ZrN ceramics. J Eur Ceram Soc. 2016; 36: 2341 â 2349.
dc.identifier.citedreferenceBegley MR, Philips NR, Compton BG, Wilbrink D, Ritchie RO, Utz M. Micromechanical models to guide the development of brick and mortar composites. J Mech Phys Solids. 2012; 60: 1545 â 1560.
dc.identifier.citedreferenceParthasarathy TA, Rapp RA, Opeka MM, Cinibulk MK. Modeling oxidation kinetics of SiCâ containing refractory diborides. J Am Ceram Soc. 2012; 95: 338 â 349.
dc.identifier.citedreferenceGasch M, Ellerby D, Irby E, Beckman S, Gusman M, Johnson S. Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics. J Mater Sci. 2004; 39: 5925 â 5937.
dc.identifier.citedreferenceMarschall J, Pejakovic DA, Fahrenholtz WG, Hilmas GE, Panerai F, Chazot O. Temperature jump phenomenon during plasmatron testing of ZrB 2 â SiC ultrahighâ temperature ceramics. J Thermophys Heat Transfer. 2012; 26: 559 â 572.
dc.identifier.citedreferenceMarschall J, Fletcher DG. Highâ enthalpy test environments, flow modeling and in situ diagnostics for characterizing ultraâ high temperature ceramics. J Eur Ceram Soc. 2010; 30: 2323 â 2336.
dc.identifier.citedreferenceNovak MD, Zok FW. High temperature materials testing with fullâ field strain measurement: experimental design and practice. Rev Sci Instrum. 2012; 82.
dc.identifier.citedreferenceJackson RW, Zaleski EM, Poerschke DL, Hazel BT, Begley MR, Levi CG. Interaction of molten silicates with thermal barrier coatings under temperature gradients. Acta Mater. 2015; 89: 396 â 407.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.