Show simple item record

Canalization Leads to Similar Whole Bone Mechanical Function at Maturity in Two Inbred Strains of Mice

dc.contributor.authorSchlecht, Stephen H
dc.contributor.authorSmith, Lauren M
dc.contributor.authorRamcharan, Melissa A
dc.contributor.authorBigelow, Erin MR
dc.contributor.authorNolan, Bonnie T
dc.contributor.authorMathis, Noah J
dc.contributor.authorCathey, Amber
dc.contributor.authorManley, Eugene
dc.contributor.authorMenon, Rajasree
dc.contributor.authorMcEachin, Richard C
dc.contributor.authorNadeau, Joseph H
dc.contributor.authorJepsen, Karl J
dc.date.accessioned2017-05-10T17:49:11Z
dc.date.available2018-07-09T17:42:25Zen
dc.date.issued2017-05
dc.identifier.citationSchlecht, Stephen H; Smith, Lauren M; Ramcharan, Melissa A; Bigelow, Erin MR; Nolan, Bonnie T; Mathis, Noah J; Cathey, Amber; Manley, Eugene; Menon, Rajasree; McEachin, Richard C; Nadeau, Joseph H; Jepsen, Karl J (2017). "Canalization Leads to Similar Whole Bone Mechanical Function at Maturity in Two Inbred Strains of Mice." Journal of Bone and Mineral Research 32(5): 1002-1013.
dc.identifier.issn0884-0431
dc.identifier.issn1523-4681
dc.identifier.urihttps://hdl.handle.net/2027.42/136753
dc.description.abstractPreviously, we showed that cortical mineralization is coordinately adjusted to mechanically offset external bone size differences between A/J (narrow) and C57BL/6J (wide) mouse femora to achieve whole bone strength equivalence at adulthood. The identity of the genes and their interactions that are responsible for establishing this homeostatic state (ie, canalization) remain unknown. We hypothesize that these inbred strains, whose interindividual differences in bone structure and material properties mimic that observed among humans, achieve functional homeostasis by differentially adjusting key molecular pathways regulating external bone size and mineralization throughout growth. The cortices of A/J and C57BL/6J male mouse femora were phenotyped and gene expression levels were assessed across growth (ie, ages 2, 4, 6, 8, 12, 16 weeks). A difference in total cross‐sectional area (p < 0.01) and cortical tissue mineral density were apparent between mouse strains by age 2 weeks and maintained at adulthood (p < 0.01). These phenotypic dissimilarities corresponded to gene expression level differences among key regulatory pathways throughout growth. A/J mice had a 1.55‐ to 7.65‐fold greater expression among genes inhibitory to Wnt pathway induction, whereas genes involved in cortical mineralization were largely upregulated 1.50‐ to 3.77‐fold to compensate for their narrow diaphysis. Additionally, both mouse strains showed an upregulation among Wnt pathway antagonists corresponding to the onset of adult ambulation (ie, increased physiological loads). This contrasts with other studies showing an increase in Wnt pathway activation after functionally isolated, experimental in vivo loading regimens. A/J and C57BL/6J long bones provide a model to develop a systems‐based approach to identify individual genes and the gene‐gene interactions that contribute to trait differences between the strains while being involved in the process by which these traits are coordinately adjusted to establish similar levels of mechanical function, thus providing insight into the process of canalization. © 2017 American Society for Bone and Mineral Research.
dc.publisherPrinceton University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherWNT/Β‐CATENIN PATHWAY
dc.subject.otherHOMEOSTASIS
dc.subject.otherBONE
dc.subject.otherFUNCTION
dc.subject.otherCANALIZATION
dc.titleCanalization Leads to Similar Whole Bone Mechanical Function at Maturity in Two Inbred Strains of Mice
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialities
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136753/1/jbmr3093.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136753/2/jbmr3093_am.pdf
dc.identifier.doi10.1002/jbmr.3093
dc.identifier.sourceJournal of Bone and Mineral Research
dc.identifier.citedreferenceKrishnan V, Bryant HU, MacDougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006; 116: 1202 – 9.
dc.identifier.citedreferenceJepsen KJ, Hu B, Tommasini SM, et al. Phenotypic integration of skeletal traits during growth buffers genetic variants affecting the slenderness of femora in inbred mouse strains. Mamm Genome. 2009; 20: 21 – 33.
dc.identifier.citedreferencePandey N, Bhola S, Goldstone A, et al. Interindividual variation in functionally adapted trait sets is established during postnatal growth and predictable based on bone robustness. J Bone Miner Res. 2009; 24: 1969 – 80.
dc.identifier.citedreferenceWaddington CH. Canalization of development and the inheritance of acquired charcteristics. Nature. 1942; 14: 563 – 5.
dc.identifier.citedreferenceJepsen KJ, Bigelow EMR, Schlecht SH. Women build long bones with less cortical mass relative to body size and bone size compared with men. Clin Orthop Relat Res. 2015; 473 ( 8 ): 2530 – 9.
dc.identifier.citedreferenceOtsu N. A threshold selection method from gray‐level histograms. IEEE Trans Syst Man Cybern. 1979; SMC‐9: 62 – 6.
dc.identifier.citedreferenceJepsen K, Goldstein S, Kuhn J, Schaffler M, Bonadio J. Type‐I collagen mutation compromises the post‐yield behavior of Mov13 long bone. J Orthop Res. 1996; 14: 493 – 9.
dc.identifier.citedreferenceJepsen KJ, Pennington DE, Lee Y‐L., Warman M, Nadeau J. Bone brittleness varies with genetic background in A/J and C57BL/6J inbred mice. J Bone Miner Res. 2001; 16: 1854 – 62.
dc.identifier.citedreferenceAnders S, Pyl P, Huber W. HTSeq—a Python framework to work with high‐throughput sequencing data. Bioinformatics. 2014; 31: 166 – 9.
dc.identifier.citedreferenceHuang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths towards the comprehensive functional analysis of large gene lists. Nucl Acids Res. 2009; 37: 1 – 13.
dc.identifier.citedreferenceAshburner M, Ball C, Blake J, et al. Gene ontology: a tool for the unification of biology. Nat Genet. 2000; 25: 25 – 9.
dc.identifier.citedreferenceLivak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2 delta delta Ct method. Methods. 2001; 25: 402 – 8.
dc.identifier.citedreferenceThermoFisher Scientific. Gene expression assay performance guaranteed with the TaqMan assays qPCR guarantee program. 2015. Applied Biosystems White Paper: docs.appliedbiosystems.com/pebiodocs/088754.pdf.
dc.identifier.citedreferenceRowe PS. Regulation of bone‐renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr. 2012; 22: 61 – 86.
dc.identifier.citedreferenceDuan P, Bonewald LF. The role of the wnt/β‐catenin signaling pathway in formation and maintenance of bone and teeth. Intern J Biochem Cell Biol. 2016; 77: 23 – 9.
dc.identifier.citedreferenceRobling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of sost/sclerostin. J Biol Chem. 2008; 283: 5866 – 75.
dc.identifier.citedreferenceMoustafa A, Sugiyama T, Saxon LK, et al. The mouse fibula as a suitable bone for study of functional adaptation to mechanical loading. Bone. 2009; 44: 930 – 5.
dc.identifier.citedreferenceTu X, Rhee Y, Condon KW, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012; 50: 209 – 17.
dc.identifier.citedreferenceMorse A, McDonald MM, Kelly NH, et al. Mechanical load increases in bone formation via a sclerostin‐independent pathway. J Bone Miner Res. 2014; 29: 2456 – 67.
dc.identifier.citedreferencePadhi D, Jang G, Stouch B, Fang L, Posvar E. Single‐dose, placebo‐controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011; 26: 19 – 26.
dc.identifier.citedreferenceMcColm J, Hu L, Womack T, Tang CC, Chiang AY. Single‐ and multiple‐dose randomized studies of blosozumab, a monoclonal antibody against sclerostin, in healthy postmenopausal women. J Bone Miner Res. 2014; 29: 935 – 43.
dc.identifier.citedreferenceMcClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mass. N Engl J Med. 2014; 370: 412 – 20.
dc.identifier.citedreferencePadhi D, Allison M, Kivitz AJ, et al. Multiple doses of sclerostin antibody romosozumab in healthy men and postmenopausal women with low bone mass: a randomized, double‐blind, placebo‐controlled study. J Clin Pharmacol. 2014; 54: 168 – 78.
dc.identifier.citedreferenceSinder BP, Lloyd WR, Salemi JD, et al. Effect of anti‐sclerostin therapy and osteogenesis imperfecta on tissue‐level properties in growing and adult mice while controlling for tissue age. Bone. 2016; 84: 222 – 9.
dc.identifier.citedreferenceWolfer DP, Crusio WE, Lipp H‐P. Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci. 2002; 25: 336 – 40.
dc.identifier.citedreferenceBonnet N, Standley KN, Bianchi EN, et al. The matricellular protein periostin is required for Sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem. 2009; 284: 35939 – 50.
dc.identifier.citedreferenceFox WM. Reflex‐ontogeny and behavioural development of the mouse. Anim Behav. 1965; 13: 234 – 41.
dc.identifier.citedreferenceTonsor SJ, Alonso‐Blanco C, Koornneef M. Gene function beyond the single trait: natural variation, gene effects, and evolutionary ecology in Arabidopsis thaliana. Plant Cell Environ. 2005; 28: 2 – 20.
dc.identifier.citedreferenceKirmani S, Amin S, McCready LK, et al. Sclerostin levels during growth in children. Osteop Intern. 2012; 23: 1123 – 30.
dc.identifier.citedreferenceClarke BL, Drake MT. Clinical utility of serum sclerostin measurements. Bonekey Rep. 2013; 361: 1 – 7.
dc.identifier.citedreferenceFarber CR, van Nas A, Ghazalpour A, et al. An integrative approach to identify candidate genes regulating BMD: combining linkage, gene expression, and association. J Bone Miner Res. 2009; 24: 106 – 16.
dc.identifier.citedreferenceKusu N, Laurikkala J, Imanshi M, et al. Sclerostin is a novel secreted osteoclast‐derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem. 2003; 278: 24113 – 7.
dc.identifier.citedreferenceNadeau JH, Burrage LC, Restivo J, Pao YH, Churchill G, Hoit BD. Pleiotropy, homeostasis, and functional networks based on assays of cardiovascular traits in genetically randomized populations. Genome Res. 2003; 13: 2082 – 91.
dc.identifier.citedreferenceCurrey JD, Alexander RM. The thickness of the walls of tubular bones. J Zool. 1985; 206: 453 – 68.
dc.identifier.citedreferenceSeeman E. Bone quality: the material and structural basis of bone strength. J Bone Miner Metabol. 2008; 26: 1 – 8.
dc.identifier.citedreferenceCao X, Chen D. The BMP signaling and in vivo bone formation. Gene. 2005; 357: 1 – 8.
dc.identifier.citedreferenceEdwards JR, Mundy GR. Advances in osteoclast biology: old findings and new insights from mouse models. Nat Rev Rheumatol. 2011; 7: 235 – 43.
dc.identifier.citedreferenceLong F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2012; 13: 27 – 38.
dc.identifier.citedreferenceBaron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013; 19: 179 – 92.
dc.identifier.citedreferenceLieben L, Carmeliet G. The delicate balance between vitamin D, calcium and bone homeostasis: lessons learned from intestinal‐ and osteocyte‐specific VDR null mice. J Steroid Biochem Mol Biol. 2013; 136: 102 – 6.
dc.identifier.citedreferenceLuo G, Ducy P, McKee MD, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997; 386: 78 – 80.
dc.identifier.citedreferenceDelany AM, Amling M, Priemel M, Howe C, Baron R, Canalis E. Osteopenia and decreased bone formation in osteonectin‐deficient mice. J Clin Invest. 2000; 105: 915 – 23.
dc.identifier.citedreferenceHankenson KD, Bain SD, Kyriakides TR, Smith EA, Goldstein SA, Bornstein P. Increased marrow‐derived osteoprogenitor cells and endosteal bone formation in mice lacking thrombospondin 2. J Bone Miner Res. 2000; 15: 851 – 62.
dc.identifier.citedreferenceAmeye L, Aria D, Jepsen K, Oldberg A, Xu T, Young MF. Abnormal collagen fibrils in tendons of biglycan/fibromodulin‐deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J. 2002; 16: 673 – 80.
dc.identifier.citedreferenceSchwarzbauer JE, Spencer CS. The Caenorhabditis elegans homologue of the extracellular calcium binding protein SPARC/osteonectin affects nematode body morphology and mobility. Mol Biol Cell. 1993; 4: 941 – 52.
dc.identifier.citedreferenceKomori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997; 89: 755 – 64.
dc.identifier.citedreferenceFarber CR. Systems‐level analysis of genome‐wide association data. G3 Genes Genome Genet. 2013; 3: 119 – 29.
dc.identifier.citedreferenceJepsen KJ, Akkus OJ, Majeska RJ, Nadeau JH. Hierarchical relationships between bone traits and mechanical properties in inbred mice. Mamm Genome. 2003; 14: 97 – 104.
dc.identifier.citedreferenceJepsen KJ, Hu B, Tommasini SM, et al. Genetic randomization reveals functional relationships among morphologic and tissue‐quality traits that contribute to bone strength and fragility. Mamm Genome. 2007; 18: 492 – 507.
dc.identifier.citedreferenceJepsen KJ, Centi A, Duarte GF, et al. Biological constraints that limit compensation of a common skeletal trait variant lead to inequivalence of tibial function among healthy young adults. J Bone Miner Res. 2011; 26: 2872 – 85.
dc.identifier.citedreferenceSchlecht SH, Jepsen KJ. Functional integration of skeletal traits: an intraskeletal assessment of bone size, mineralization, and volume covariance. Bone. 2013; 56: 127 – 38.
dc.identifier.citedreferenceSchlecht SH, Bigelow EMR, Jepsen KJ. Mapping the natural variation in whole bone stiffness and strength across skeletal sites. Bone. 2014; 67: 15 – 22.
dc.identifier.citedreferencePrice C, Herman BC, Lufkin T, Goldman HM, Jepsen KJ. Genetic variation in bone growth patterns defines adult mouse bone fragility. J Bone Miner Res. 2005; 20: 1983 – 91.
dc.identifier.citedreferenceSmith L, Bigelow EMR, Nolan BT, Faillace ME, Nadeau JH, Jepsen KJ. Genetic perturbations that impair functional trait interactions lead to reduced bone strength and increased fragility in mice. Bone. 2014; 67: 130 – 8.
dc.identifier.citedreferenceAlexander RM. Optima for animals. Revised ed. Princeton, NJ: Princeton University Press 1996. 176 p.
dc.identifier.citedreferencePapadimitriou HM, Swartz SM, Kunz TH. Ontogenetic and anatomic variation in mineralization of the wing skeleton of the Mexican free‐tailed bat, Tadarida brasiliensis. J Zool. 1996; 240: 411 – 26.
dc.identifier.citedreferenceDumont ER. Bone density and the lightweight skeletons of birds. Proc Royal Soc B: Biol Sci. 2010; 277: 2193 – 8.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.