Show simple item record

Objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data

dc.contributor.authorZarzycki, Colin M.
dc.contributor.authorThatcher, Diana R.
dc.contributor.authorJablonowski, Christiane
dc.date.accessioned2017-05-10T17:49:13Z
dc.date.available2018-05-04T20:56:59Zen
dc.date.issued2017-03
dc.identifier.citationZarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane (2017). "Objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data." Journal of Advances in Modeling Earth Systems 9(1): 130-148.
dc.identifier.issn1942-2466
dc.identifier.issn1942-2466
dc.identifier.urihttps://hdl.handle.net/2027.42/136754
dc.description.abstractThis paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high‐resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable‐resolution Community Atmosphere Model (CAM) at two different resolutions (ΔX∼55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, ΔX∼38 km), and the ERA‐Interim Reanalysis (ERA‐I, ΔX∼80 km). The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA‐I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High‐resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold‐core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.Key PointsAn objective detection technique for tracking tropical cyclone extratropical transition in gridded climate data is describedObjectively calculated extratropical transition climatology in high‐resolution reanalyses closely match observational studiesTropical cyclones in CAM take too long to undergo extratropical transition highlighting model biases requiring further investigation
dc.publisherMétéo‐France
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdetection
dc.subject.otherhigh resolution
dc.subject.othertracking
dc.subject.othertropical cyclones
dc.subject.othermodeling
dc.titleObjective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136754/1/jame20355_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136754/2/jame20355.pdf
dc.identifier.doi10.1002/2016MS000775
dc.identifier.sourceJournal of Advances in Modeling Earth Systems
dc.identifier.citedreferenceTaylor, M., J. Tribbia, and M. Iskandarani ( 1997 ), The spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 130 ( 1 ), 92 – 108, doi: 10.1006/jcph.1996.5554.
dc.identifier.citedreferenceSinclair, M. R. ( 1993 ), Synoptic‐scale diagnosis of the extratropical transition of a southwest Pacific tropical cyclone, Mon. Weather Rev., 121 ( 4 ), 941 – 960, doi: 10.1175/1520-0493(1993)121<0941:SSDOTE>2.0.CO;2.
dc.identifier.citedreferenceSinclair, M. R. ( 2002 ), Extratropical transition of southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes, Mon. Weather Rev., 130 ( 3 ), 590 – 609, doi: 10.1175/1520-0493(2002)130<0590:ETOSPT>2.0.CO;2.
dc.identifier.citedreferenceSong, J., J. Han, and Y. Wang ( 2011 ), Cyclone phase space characteristics of the extratropical transitioning tropical cyclones over the western North Pacific, Acta Meteorol. Sin., 25 ( 1 ), 78 – 90, doi: 10.1007/s13351-011-0006-y.
dc.identifier.citedreferenceStrachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.‐E. Demory ( 2013 ), Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution, J. Clim., 26 ( 1 ), 133 – 152, doi: 10.1175/JCLI-D-12-00012.1.
dc.identifier.citedreferenceStudholme, J., K. I. Hodges, and C. M. Brierley ( 2015 ), Objective determination of the extratropical transition of tropical cyclones in the Northern Hemisphere, Tellus, Ser. A, 67, doi: 10.3402/tellusa.v67.24474.
dc.identifier.citedreferenceTaylor, M. A., and A. Fournier ( 2010 ), A compatible and conservative spectral element method on unstructured grids, J. Comput. Phys., 229 ( 17 ), 5879 – 5895, doi: 10.1016/j.jcp.2010.04.008.
dc.identifier.citedreferenceUllrich, P. A., and M. A. Taylor ( 2015 ), Arbitrary‐order conservative and consistent remapping and a theory of linear maps: Part I, Mon. Weather Rev., 143 ( 6 ), 2419 – 2440, doi: 10.1175/MWR-D-14-00343.1.
dc.identifier.citedreferenceUllrich, P. A., and C. M. Zarzycki ( 2016 ), Tempestextremes: A framework for scale‐insensitive pointwise feature tracking on unstructured grids, Geosci. Model Dev. Discuss., doi: 10.5194/gmd-2016-217, in press.
dc.identifier.citedreferenceUllrich, P. A., D. Devendran, and H. Johansen ( 2016 ), Arbitrary‐order conservative and consistent remapping and a theory of linear maps: Part II, Mon. Weather Rev., 144 ( 4 ), 1529 – 1549, doi: 10.1175/MWR-D-15-0301.1.
dc.identifier.citedreferenceWalsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes ( 2007 ), Objectively determined resolution‐dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses, J. Clim., 20 ( 10 ), 2307 – 2314, doi: 10.1175/JCLI4074.1.
dc.identifier.citedreferenceWalsh, K. J. E., et al. ( 2015 ), Hurricanes and climate: The U.S. CLIVAR working group on hurricanes, Bull. Am. Meteorol. Soc., 96 ( 6 ), 997 – 1017, doi: 10.1175/BAMS-D-13-00242.1.
dc.identifier.citedreferenceWehner, M. F., et al. ( 2014 ), The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1, J. Adv. Model. Earth Syst., 6, 980 – 997, doi: 10.1002/2013MS000276.
dc.identifier.citedreferenceWood, K. M., and E. A. Ritchie ( 2014 ), A 40‐year climatology of extratropical transition in the eastern North Pacific, J. Clim., 27 ( 15 ), 5999 – 6015, doi: 10.1175/JCLI-D-13-00645.1.
dc.identifier.citedreferenceZarzycki, C. M. ( 2016 ), Tropical cyclone climatology biases associated with prescribed sea surface temperatures in high‐resolution global atmospheric experiments, J. Clim., 29, 8589 – 8610, doi: 10.1175/JCLI-D-16-0273.1.
dc.identifier.citedreferenceZarzycki, C. M., and C. Jablonowski ( 2014 ), A multidecadal simulation of Atlantic tropical cyclones using a variable‐resolution global atmospheric general circulation model, J. Adv. Model. Earth Syst., 6, 805 – 828, doi: 10.1002/2014MS000352.
dc.identifier.citedreferenceZarzycki, C. M., C. Jablonowski, and M. A. Taylor ( 2014a ), Using variable‐resolution meshes to model tropical cyclones in the Community Atmosphere Model, Mon. Weather Rev., 142 ( 3 ), 1221 – 1239, doi: 10.1175/MWR-D-13-00179.1.
dc.identifier.citedreferenceZarzycki, C. M., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor, and P. A. Ullrich ( 2014b ), Aquaplanet experiments using CAM’s variable‐resolution dynamical core, J. Clim., 27, 5481 – 5503, doi: 10.1175/JCLI-D-14-00004.1.
dc.identifier.citedreferenceZarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor ( 2015 ), Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model, J. Clim., 28 ( 7 ), 2777 – 2803, doi: 10.1175/JCLI-D-14-00599.1.
dc.identifier.citedreferenceZarzycki, C. M., K. A. Reed, J. T. Bacmeister, A. P. Craig, S. C. Bates, and N. A. Rosenbloom ( 2016 ), Impact of surface coupling grids on tropical cyclone extremes in high‐resolution atmospheric simulations, Geosci. Model Dev., 9 ( 2 ), 779 – 788, doi: 10.5194/gmd-9-779-2016.
dc.identifier.citedreferenceZhao, M., I. M. Held, S.‐J. Lin, and G. A. Vecchi ( 2009 ), Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50‐km resolution GCM, J. Clim., 22 ( 24 ), 6653 – 6678, doi: 10.1175/2009JCLI3049.1.
dc.identifier.citedreferenceZhao, M., I. M. Held, and S.‐J. Lin ( 2012 ), Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM, J. Atmos. Sci., 69 ( 7 ), 2272 – 2283, doi: 10.1175/JAS-D-11-0238.1.
dc.identifier.citedreferenceAnwender, D., P. A. Harr, and S. C. Jones ( 2008 ), Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies, Mon. Weather Rev., 136 ( 9 ), 3226 – 3247, doi: 10.1175/2008MWR2249.1.
dc.identifier.citedreferenceBacmeister, J. T., M. F. Wehner, R. B. Neale, A. Gettelman, C. Hannay, P. H. Lauritzen, J. M. Caron, and J. E. Truesdale ( 2014 ), Exploratory high‐resolution climate simulations using the Community Atmosphere Model (CAM), J. Clim., 27 ( 9 ), 3073 – 3099, doi: 10.1175/JCLI-D-13-00387.1.
dc.identifier.citedreferenceBengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.‐J. Luo, and T. Yamagata ( 2007 ), How may tropical cyclones change in a warmer climate?, Tellus, Ser. A, 59 ( 4 ), 539 – 561, doi: 10.1111/j.1600-0870.2007.00251.x.
dc.identifier.citedreferenceBrown, D. P. ( 2013 ), Tropical cyclone report: Hurricane Nadine, Tech. Rep. #AL142012, Natl. Hurricane Cent., 19, Miami, Fla.
dc.identifier.citedreferenceDee, D. P., et al. ( 2011 ), The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137 ( 656 ), 553 – 597, doi: 10.1002/qj.828.
dc.identifier.citedreferenceDennis, J. M., J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A. Mirin, A. St‐Cyr, M. A. Taylor, and P. H. Worley ( 2012 ), CAM‐SE: A scalable spectral element dynamical core for the Community Atmosphere Model, Int. J. High Performance Comput. Appl., 26 ( 1 ), 74 – 89, doi: 10.1177/1094342011428142.
dc.identifier.citedreferenceDiMego, G. J., and L. F. Bosart ( 1982 ), The transformation of Tropical Storm Agnes into an extratropical cyclone. Part I: The observed fields and vertical motion computations, Mon. Weather Rev., 110 ( 5 ), 385 – 411, doi: 10.1175/1520-0493(1982)110<0385:TTOTSA>2.0.CO;2.
dc.identifier.citedreferenceEvans, C., and R. E. Hart ( 2008 ), Analysis of the wind field evolution associated with the Extratropical Transition of Bonnie (1998), Mon. Weather Rev., 136 ( 6 ), 2047 – 2065, doi: 10.1175/2007MWR2051.1.
dc.identifier.citedreferenceEvans, J. L., and R. E. Hart ( 2003 ), Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones, Mon. Weather Rev., 131 ( 5 ), 909 – 925, doi: 10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.
dc.identifier.citedreferenceFoley, G., and B. Hanstrum ( 1994 ), The capture of tropical cyclones by cold fronts off the west coast of Australia, Weather Forecast., 9 ( 4 ), 577 – 592, doi: 10.1175/1520-0434(1994)009<0577:TCOTCB>2.0.CO;2.
dc.identifier.citedreferenceGates, W. L. ( 1992 ), AMIP: The atmospheric model intercomparison project, Bull. Am. Meteorol. Soc., 73 ( 12 ), 1962 – 1970, doi: 10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.
dc.identifier.citedreferenceGleckler, P. J. (Ed.) ( 2004 ), The Second Phase of the Atmospheric Model Intercomparison Project (AMIP2): Toward Innovative Model Diagnostics, 253 pp., Météo‐France, Toulouse, France.
dc.identifier.citedreferenceGoldenberg, S. B., and L. J. Shapiro ( 1996 ), Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity, J. Clim., 9 ( 6 ), 1169 – 1187, doi: 10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.
dc.identifier.citedreferenceHarr, P. A., and R. L. Elsberry ( 2000 ), Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process, Mon. Weather Rev., 128 ( 8 ), 2613 – 2633, doi: 10.1175/1520-0493(2000)128<2613:ETOTCO>2.0.CO;2.
dc.identifier.citedreferenceHarr, P. A., R. L. Elsberry, and T. F. Hogan ( 2000 ), Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics, Mon. Weather Rev., 128 ( 8 ), 2634 – 2653, doi: 10.1175/1520-0493(2000)128<2634:ETOTCO>2.0.CO;2.
dc.identifier.citedreferenceHart, R. E. ( 2003 ), A cyclone phase space derived from thermal wind and thermal asymmetry, Mon. Weather Rev., 131 ( 4 ), 585 – 616, doi: 10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.
dc.identifier.citedreferenceHart, R. E., and J. L. Evans ( 2001 ), A climatology of the extratropical transition of Atlantic tropical cyclones, J. Clim., 14 ( 4 ), 546 – 564, doi: 10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.
dc.identifier.citedreferenceHart, R. E., J. L. Evans, and C. Evans ( 2006 ), Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution, Mon. Weather Rev., 134 ( 2 ), 553 – 578, doi: 10.1175/MWR3082.1.
dc.identifier.citedreferenceHolton, J. R. ( 2004 ), An Introduction to Dynamic Meteorology, 535 pp., Elsevier, New York.
dc.identifier.citedreferenceHurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski ( 2008 ), A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model, J. Clim., 21 ( 19 ), 5145 – 5153, doi: 10.1175/2008JCLI2292.1.
dc.identifier.citedreferenceJarvinen, B., C. Neumann, and M. Davis ( 1984 ), A tropical cyclone data tape for the North Atlantic Basin, 1886–1983: Contents, limitations, and uses, Tech. Memo. NWS NHC 22, Natl. Oceanic Atmos. Admin., Miama, Fla.
dc.identifier.citedreferenceJones, S. C., et al. ( 2003 ), The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions, Weather Forecast., 18 ( 6 ), 1052 – 1092, doi: 10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.
dc.identifier.citedreferenceKitabatake, N. ( 2011 ), Climatology of extratropical transition of tropical cyclones in the western North Pacific defined by using cyclone phase space, J. Meteorol. Soc. Jpn., 89 ( 4 ), 309 – 325, doi: 10.2151/jmsj.2011-402.
dc.identifier.citedreferenceKlein, P. M., P. A. Harr, and R. L. Elsberry ( 2000 ), Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage, Weather Forecast., 15 ( 4 ), 373 – 395, doi: 10.1175/1520-0434(2000)015<0373:ETOWNP>2.0.CO;2.
dc.identifier.citedreferenceKnapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann ( 2010 ), The international best track archive for climate stewardship (IBTrACS), Bull. Am. Meteorol. Soc., 91 ( 3 ), 363 – 376, doi: 10.1175/2009BAMS2755.1.
dc.identifier.citedreferenceKrishnamurti, T. N., D. Oosterhof, and N. Dignon ( 1989 ), Hurricane prediction with a high resolution global model, Mon. Weather Rev., 117 ( 3 ), 631 – 669, doi: 10.1175/1520-0493(1989)117<0631:HPWAHR>2.0.CO;2.
dc.identifier.citedreferenceLandsea, C. W., and J. L. Franklin ( 2013 ), Atlantic hurricane database uncertainty and presentation of a new database format, Mon. Weather Rev., 141 ( 10 ), 3576 – 3592, doi: 10.1175/MWR-D-12-00254.1.
dc.identifier.citedreferenceLim, Y.‐K., S. D. Schubert, O. Reale, M.‐I. Lee, A. M. Molod, and M. J. Suarez ( 2014 ), Sensitivity of tropical cyclones to parameterized convection in the NASA GEOS‐5 model, J. Clim., 28 ( 2 ), 551 – 573, doi: 10.1175/JCLI-D-14-00104.1.
dc.identifier.citedreferenceMcAdie, C., C. Landsea, C. Neumann, J. David, E. Blake, and G. Hammer ( 2009 ), Tropical Cyclones of the North Atlantic Ocean, 1851‐2006, Hist. Climatol. Ser., vol. 6‐2, 238 pp., Natl. Clim. Data Cent.
dc.identifier.citedreferenceMurakami, H. ( 2014 ), Tropical cyclones in reanalysis data sets, Geophys. Res. Lett., 41 2133 – 2141, doi: 10.1002/2014GL059519.
dc.identifier.citedreferenceNeale, R. B., et al. ( 2010 ), Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR Tech. Note NCAR/TN‐486+STR, 268 pp., Natl. Cent. for Atmos. Res., Boulder, Colo.
dc.identifier.citedreferenceOleson, K. W., et al. ( 2010 ), Technical description of version 4.0 of the Community Land Model (CLM), NCAR Tech. Note NCAR/TN‐478+STR, 257 pp., Natl. Cent. for Atmos. Res., Boulder, Colo.
dc.identifier.citedreferenceReed, K. A., and D. R. Chavas ( 2015 ), Uniformly rotating global radiative‐convective equilibrium in the community atmosphere model, version 5, J. Adv. Model. Earth Syst., 7, 1938 – 1955, doi: 10.1002/2015MS000519.
dc.identifier.citedreferenceReed, K. A., and C. Jablonowski ( 2011 ), Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model, Geophys. Res. Lett., 38, L04805, doi: 10.1029/2010GL046297.
dc.identifier.citedreferenceReed, K. A., J. T. Bacmeister, N. A. Rosenbloom, M. F. Wehner, S. C. Bates, P. H. Lauritzen, J. E. Truesdale, and C. Hannay ( 2015 ), Impact of the dynamical core on the direct simulation of tropical cyclones in a high‐resolution global model, Geophys. Res. Lett., 42, 3603 – 3608, doi: 10.1002/2015GL063974.
dc.identifier.citedreferenceRitchie, E. A., and R. L. Elsberry ( 2001 ), Simulations of the transformation stage of the extratropical transition of tropical cyclones, Mon. Weather Rev., 129 ( 6 ), 1462 – 1480, doi: 10.1175/1520-0493(2001)129<1462:SOTTSO>2.0.CO;2.
dc.identifier.citedreferenceRitchie, E. A., and R. L. Elsberry ( 2003 ), Simulations of the extratropical transition of tropical cyclones: Contributions by the midlatitude upper‐level trough to reintensification, Mon. Weather Rev., 131 ( 9 ), 2112 – 2128, doi: 10.1175/1520-0493(2003)131<2112:SOTETO>2.0.CO;2.
dc.identifier.citedreferenceRitchie, E. A., and R. L. Elsberry ( 2007 ), Simulations of the extratropical transition of tropical cyclones: Phasing between the upper‐level trough and tropical cyclones, Mon. Weather Rev., 135 ( 3 ), 862 – 876, doi: 10.1175/MWR3303.1.
dc.identifier.citedreferenceSaha, S., et al. ( 2010 ), The NCEP climate forecast system reanalysis, Bull. Am. Meteorol. Soc., 91, 1015 – 1057.
dc.identifier.citedreferenceSchenkel, B. A., and R. E. Hart ( 2012 ), An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets, J. Clim., 25 ( 10 ), 3453 – 3475, doi: 10.1175/2011JCLI4208.1.
dc.identifier.citedreferenceSimpson, R. H. ( 1974 ), The hurricane disaster—Potential scale, Weatherwise, 27 ( 4 ), 169 – 186, doi: 10.1080/00431672.1974.9931702.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.