Show simple item record

A covalently bound inhibitor triggers EZH2 degradation through CHIP‐mediated ubiquitination

dc.contributor.authorWang, Xu
dc.contributor.authorCao, Wei
dc.contributor.authorZhang, Jianjun
dc.contributor.authorYan, Ming
dc.contributor.authorXu, Qin
dc.contributor.authorWu, Xiangbing
dc.contributor.authorWan, Lixin
dc.contributor.authorZhang, Zhiyuan
dc.contributor.authorZhang, Chenping
dc.contributor.authorQin, Xing
dc.contributor.authorXiao, Meng
dc.contributor.authorYe, Dongxia
dc.contributor.authorLiu, Yuyang
dc.contributor.authorHan, Zeguang
dc.contributor.authorWang, Shaomeng
dc.contributor.authorMao, Li
dc.contributor.authorWei, Wenyi
dc.contributor.authorChen, Wantao
dc.date.accessioned2017-05-10T17:49:15Z
dc.date.available2018-07-09T17:42:25Zen
dc.date.issued2017-05-02
dc.identifier.citationWang, Xu; Cao, Wei; Zhang, Jianjun; Yan, Ming; Xu, Qin; Wu, Xiangbing; Wan, Lixin; Zhang, Zhiyuan; Zhang, Chenping; Qin, Xing; Xiao, Meng; Ye, Dongxia; Liu, Yuyang; Han, Zeguang; Wang, Shaomeng; Mao, Li; Wei, Wenyi; Chen, Wantao (2017). "A covalently bound inhibitor triggers EZH2 degradation through CHIP‐mediated ubiquitination." The EMBO Journal 36(9): 1243-1260.
dc.identifier.issn0261-4189
dc.identifier.issn1460-2075
dc.identifier.urihttps://hdl.handle.net/2027.42/136756
dc.description.abstractEnhancer of zeste homolog 2 (EZH2) has been characterized as a critical oncogene and a promising drug target in human malignant tumors. The current EZH2 inhibitors strongly suppress the enhanced enzymatic function of mutant EZH2 in some lymphomas. However, the recent identification of a PRC2‐ and methyltransferase‐independent role of EZH2 indicates that a complete suppression of all oncogenic functions of EZH2 is needed. Here, we report a unique EZH2‐targeting strategy by identifying a gambogenic acid (GNA) derivative as a novel agent that specifically and covalently bound to Cys668 within the EZH2‐SET domain, triggering EZH2 degradation through COOH terminus of Hsp70‐interacting protein (CHIP)‐mediated ubiquitination. This class of inhibitors significantly suppressed H3K27Me3 and effectively reactivated polycomb repressor complex 2 (PRC2)‐silenced tumor suppressor genes. Moreover, the novel inhibitors significantly suppressed tumor growth in an EZH2‐dependent manner, and tumors bearing a non‐GNA‐interacting C668S‐EZH2 mutation exhibited resistance to the inhibitors. Together, our results identify the inhibition of the signaling pathway that governs GNA‐mediated destruction of EZH2 as a promising anti‐cancer strategy.SynopsisAberrant activation of PRC2 can block expression of key tumor suppressors and contribute to oncogenesis. The discovery of a drug that triggers specific degradation of PRC2 component EZH2 offers a new therapeutic strategy for cancer treatment.Derivatives of gambogenic acid (GNA) represent a new and unique category of EZH2 inhibitors.GNA‐derivatives bind covalently to EZH2, but not other methyltransferases, and trigger its degradation.The E3 ubiquitin ligase CHIP governs ubiquitination and destruction of EZH2 oncoprotein upon covalent binding of GNA derivatives.GNA derivatives efficiently inhibit cancer growth in vivo while showing little toxic side effect.Aberrant activation of PRC2 can block expression of key tumor suppressors and contribute to oncogenesis. The discovery of a drug that triggers specific degradation of PRC2 component EZH2 offers a new therapeutic strategy for cancer treatment.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercovalent inhibitor
dc.subject.otherEZH2
dc.subject.otheroncoprotein
dc.subject.otherubiquitination
dc.subject.otherCHIP
dc.titleA covalently bound inhibitor triggers EZH2 degradation through CHIP‐mediated ubiquitination
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136756/1/embj201694058-sup-0003-SDataFig2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136756/2/embj201694058-sup-0005-SDataFig4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136756/3/embj201694058.reviewer_comments.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136756/4/embj201694058-sup-0004-SDataFig3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136756/5/embj201694058_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136756/6/embj201694058.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136756/7/embj201694058-sup-0002-SDataFig1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136756/8/embj201694058-sup-0006-SDataFig5.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136756/9/embj201694058-sup-0001-Appendix.pdf
dc.identifier.doi10.15252/embj.201694058
dc.identifier.sourceThe EMBO Journal
dc.identifier.citedreferenceShen S, Zhang P, Lovchik MA, Li Y, Tang L, Chen Z, Zeng R, Ma D, Yuan J, Yu Q ( 2009 ) Cyclodepsipeptide toxin promotes the degradation of Hsp90 client proteins through chaperone‐mediated autophagy. J Cell Biol 185: 629 – 639
dc.identifier.citedreferenceKondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi‐Addo B, Gold DL, Sekido Y, Huang TH, Issa JP ( 2008 ) Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 40: 741 – 750
dc.identifier.citedreferenceKronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X, Ciarlo C, Hartman E, Munshi N, Schenone M, Schreiber SL, Carr SA, Ebert BL ( 2014 ) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343: 301 – 305
dc.identifier.citedreferenceLiu CX, Yin QQ, Zhou HC, Wu YL, Pu JX, Xia L, Liu W, Huang X, Jiang T, Wu MX, He LC, Zhao YX, Wang XL, Xiao WL, Chen HZ, Zhao Q, Zhou AW, Wang LS, Sun HD, Chen GQ ( 2012 ) Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells. Nat Chem Biol 8: 486 – 493
dc.identifier.citedreferenceLu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, Wong KK, Bradner JE, Kaelin WG Jr ( 2014 ) The myeloma drug lenalidomide promotes the cereblon‐dependent destruction of Ikaros proteins. Science 343: 305 – 309
dc.identifier.citedreferenceMartin HL, Adams M, Higgins J, Bond J, Morrison EE, Bell SM, Warriner S, Nelson A, Tomlinson DC ( 2014 ) High‐content, high‐throughput screening for the identification of cytotoxic compounds based on cell morphology and cell proliferation markers. PLoS One 9: e88338
dc.identifier.citedreferenceMcCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Iii AD, Diaz E, Lafrance LV, Mellinger M, Duquenne C, Tian X, Kruger RG, McHugh CF, Brandt M, Miller WH, Dhanak D, Verma SK et al ( 2012 ) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2‐activating mutations. Nature 492: 108 – 112
dc.identifier.citedreferenceMiranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, Marquez VE, Jones PA ( 2009 ) DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 8: 1579 – 1588
dc.identifier.citedreferenceMorris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ ( 2009 ) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30: 2785 – 2791
dc.identifier.citedreferenceNetwork CGA ( 2012 ) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487: 330 – 337
dc.identifier.citedreferencePalempalli UD, Gandhi U, Kalantari P, Vunta H, Arner RJ, Narayan V, Ravindran A, Prabhu KS ( 2009 ) Gambogic acid covalently modifies IkappaB kinase‐beta subunit to mediate suppression of lipopolysaccharide‐induced activation of NF‐kappaB in macrophages. Biochem J 419: 401 – 409
dc.identifier.citedreferencePlath K, Fang J, Mlynarczyk‐Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y ( 2003 ) Role of histone H3 lysine 27 methylation in X inactivation. Science 300: 131 – 135
dc.identifier.citedreferenceQi W, Chan H, Teng L, Li L, Chuai S, Zhang R, Zeng J, Li M, Fan H, Lin Y, Gu J, Ardayfio O, Zhang JH, Yan X, Fang J, Mi Y, Zhang M, Zhou T, Feng G, Chen Z et al ( 2012 ) Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci USA 109: 21360 – 21365
dc.identifier.citedreferenceSahasrabuddhe AA, Chen X, Chung F, Velusamy T, Lim MS, Elenitoba‐Johnson KS ( 2015 ) Oncogenic Y641 mutations in EZH2 prevent Jak2/beta‐TrCP‐mediated degradation. Oncogene 34: 445 – 454
dc.identifier.citedreferenceShangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska‐Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y et al ( 2008 ) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 105: 3933 – 3938
dc.identifier.citedreferenceShih AH, Abdel‐Wahab O, Patel JP, Levine RL ( 2012 ) The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 12: 599 – 612
dc.identifier.citedreferenceSparmann A, van Lohuizen M ( 2006 ) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6: 846 – 856
dc.identifier.citedreferenceStadler ZK, Schrader KA, Vijai J, Robson ME, Offit K ( 2014 ) Cancer genomics and inherited risk. J Clin Oncol 32: 687 – 698
dc.identifier.citedreferenceTan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RK, Tan PB, Liu ET, Yu Q ( 2007 ) Pharmacologic disruption of Polycomb‐repressive complex 2‐mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 21: 1050 – 1063
dc.identifier.citedreferenceTiedt R, Degenkolbe E, Furet P, Appleton BA, Wagner S, Schoepfer J, Buck E, Ruddy DA, Monahan JE, Jones MD, Blank J, Haasen D, Drueckes P, Wartmann M, McCarthy C, Sellers WR, Hofmann F ( 2011 ) A drug resistance screen using a selective MET inhibitor reveals a spectrum of mutations that partially overlap with activating mutations found in cancer patients. Cancer Res 71: 5255 – 5264
dc.identifier.citedreferenceTitov DV, Gilman B, He QL, Bhat S, Low WK, Dang Y, Smeaton M, Demain AL, Miller PS, Kugel JF, Goodrich JA, Liu JO ( 2011 ) XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat Chem Biol 7: 182 – 188
dc.identifier.citedreferenceWei Y, Chen YH, Li LY, Lang J, Yeh SP, Shi B, Yang CC, Yang JY, Lin CY, Lai CC, Hung MC ( 2011 ) CDK1‐dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat Cell Biol 13: 87 – 94
dc.identifier.citedreferenceWhitesell L, Lindquist SL ( 2005 ) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5: 761 – 772
dc.identifier.citedreferenceWu ZL, Zheng SS, Li ZM, Qiao YY, Aau MY, Yu Q ( 2010 ) Polycomb protein EZH2 regulates E2F1‐dependent apoptosis through epigenetically modulating Bim expression. Cell Death Differ 17: 801 – 810
dc.identifier.citedreferenceWu SC, Zhang Y ( 2011 ) Cyclin‐dependent kinase 1 (CDK1)‐mediated phosphorylation of enhancer of zeste 2 (Ezh2) regulates its stability. J Biol Chem 286: 28511 – 28519
dc.identifier.citedreferenceXu T, Zhou Q, Zhou J, Huang Y, Yan Y, Li W, Wang C, Hu G, Lu Y, Chen J ( 2011 ) Carboxyl terminus of Hsp70‐interacting protein (CHIP) contributes to human glioma oncogenesis. Cancer Sci 102: 959 – 966
dc.identifier.citedreferenceXu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, Wu X, Stack EC, Loda M, Liu T, Xu H, Cato L, Thornton JE, Gregory RI, Morrissey C, Vessella RL, Montironi R, Magi‐Galluzzi C, Kantoff PW, Balk SP et al ( 2012 ) EZH2 oncogenic activity in castration‐resistant prostate cancer cells is Polycomb‐independent. Science 338: 1465 – 1469
dc.identifier.citedreferenceXu B, On DM, Ma A, Parton T, Konze KD, Pattenden SG, Allison DF, Cai L, Rockowitz S, Liu S, Liu Y, Li F, Vedadi M, Frye SV, Garcia BA, Zheng D, Jin J, Wang GG ( 2015 ) Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL‐rearranged leukemia. Blood 125: 346 – 357
dc.identifier.citedreferenceYan S, Sun X, Xiang B, Cang H, Kang X, Chen Y, Li H, Shi G, Yeh ET, Wang B, Wang X, Yi J ( 2010 ) Redox regulation of the stability of the SUMO protease SENP3 via interactions with CHIP and Hsp90. EMBO J 29: 3773 – 3786
dc.identifier.citedreferenceYan F, Wang M, Chen H, Su J, Wang X, Wang F, Xia L, Li Q ( 2011 ) Gambogenic acid mediated apoptosis through the mitochondrial oxidative stress and inactivation of Akt signaling pathway in human nasopharyngeal carcinoma CNE‐1 cells. Eur J Pharmacol 652: 23 – 32
dc.identifier.citedreferenceYan J, Ng SB, Tay JL, Lin B, Koh TL, Tan J, Selvarajan V, Liu SC, Bi C, Wang S, Choo SN, Shimizu N, Huang G, Yu Q, Chng WJ ( 2013 ) EZH2 overexpression in natural killer/T‐cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood 121: 4512 – 4520
dc.identifier.citedreferenceYu XJ, Han QB, Wen ZS, Ma L, Gao J, Zhou GB ( 2012 ) Gambogenic acid induces G1 arrest via GSK3beta‐dependent cyclin D1 degradation and triggers autophagy in lung cancer cells. Cancer Lett 322: 185 – 194
dc.identifier.citedreferenceYu YL, Chou RH, Shyu WC, Hsieh SC, Wu CS, Chiang SY, Chang WJ, Chen JN, Tseng YJ, Lin YH, Lee W, Yeh SP, Hsu JL, Yang CC, Hung SC, Hung MC ( 2013 ) Smurf2‐mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke. EMBO Mol Med 5: 531 – 547
dc.identifier.citedreferenceYun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M, Eck MJ ( 2008 ) The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 105: 2070 – 2075
dc.identifier.citedreferenceZhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, Liang WX, Song AX, Lallemand‐Breitenbach V, Jeanne M, Zhang QY, Yang HY, Huang QH, Zhou GB, Tong JH, Zhang Y, Wu JH, Hu HY, de The H, Chen SJ et al ( 2010 ) Arsenic trioxide controls the fate of the PML‐RARalpha oncoprotein by directly binding PML. Science 328: 240 – 243
dc.identifier.citedreferenceZhen T, Wu CF, Liu P, Wu HY, Zhou GB, Lu Y, Liu JX, Liang Y, Li KK, Wang YY, Xie YY, He MM, Cao HM, Zhang WN, Chen LM, Petrie K, Chen SJ, Chen Z ( 2012 ) Targeting of AML1‐ETO in t(8;21) leukemia by oridonin generates a tumor suppressor‐like protein. Sci Transl Med 4: 127ra138
dc.identifier.citedreferenceZhou W, Ercan D, Chen L, Yun CH, Li D, Capelletti M, Cortot AB, Chirieac L, Iacob RE, Padera R, Engen JR, Wong KK, Eck MJ, Gray NS, Janne PA ( 2009 ) Novel mutant‐selective EGFR kinase inhibitors against EGFR T790M. Nature 462: 1070 – 1074
dc.identifier.citedreferenceAdams M, Cookson VJ, Higgins J, Martin HL, Tomlinson DC, Bond J, Morrison EE, Bell SM ( 2014 ) A high‐throughput assay to identify modifiers of premature chromosome condensation. J Biomol Screen 19: 176 – 183
dc.identifier.citedreferenceArimidex TAoiCTG, Buzdar A, Howell A, Cuzick J, Wale C, Distler W, Hoctin‐Boes G, Houghton J, Locker GY, Nabholtz JM ( 2006 ) Comprehensive side‐effect profile of anastrozole and tamoxifen as adjuvant treatment for early‐stage breast cancer: long‐term safety analysis of the ATAC trial. Lancet Oncol 7: 633 – 643
dc.identifier.citedreferenceAshkenazy H, Erez E, Martz E, Pupko T, Ben‐Tal N ( 2010 ) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38: W529 – W533
dc.identifier.citedreferenceBaker T, Nerle S, Pritchard J, Zhao B, Rivera VM, Garner A, Gonzalvez F ( 2015 ) Acquisition of a single EZH2 D1 domain mutation confers acquired resistance to EZH2‐targeted inhibitors. Oncotarget 6: 32646 – 32655
dc.identifier.citedreferenceBonasio R, Tu S, Reinberg D ( 2010 ) Molecular signals of epigenetic states. Science 330: 612 – 616
dc.identifier.citedreferenceBonvini P, Dalla Rosa H, Vignes N, Rosolen A ( 2004 ) Ubiquitination and proteasomal degradation of nucleophosmin‐anaplastic lymphoma kinase induced by 17‐allylamino‐demethoxygeldanamycin: role of the co‐chaperone carboxyl heat shock protein 70‐interacting protein. Cancer Res 64: 3256 – 3264
dc.identifier.citedreferenceBracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K ( 2003 ) EZH2 is downstream of the pRB‐E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22: 5323 – 5335
dc.identifier.citedreferenceBracken AP, Helin K ( 2009 ) Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer 9: 773 – 784
dc.identifier.citedreferenceCai Q, Sun H, Peng Y, Lu J, Nikolovska‐Coleska Z, McEachern D, Liu L, Qiu S, Yang CY, Miller R, Yi H, Zhang T, Sun D, Kang S, Guo M, Leopold L, Yang D, Wang S ( 2011 ) A potent and orally active antagonist (SM‐406/AT‐406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J Med Chem 54: 2714 – 2726
dc.identifier.citedreferenceCao R, Wang L, Wang H, Xia L, Erdjument‐Bromage H, Tempst P, Jones RS, Zhang Y ( 2002 ) Role of histone H3 lysine 27 methylation in Polycomb‐group silencing. Science 298: 1039 – 1043
dc.identifier.citedreferenceCao R, Tsukada Y, Zhang Y ( 2005 ) Role of Bmi‐1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20: 845 – 854
dc.identifier.citedreferenceCao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, Kim JH, Brenner JC, Jing X, Cao X, Wang R, Li Y, Dahiya A, Wang L, Pandhi M, Lonigro RJ, Wu YM, Tomlins SA, Palanisamy N, Qin Z et al ( 2011 ) Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 20: 187 – 199
dc.identifier.citedreferenceCao J, Wan L, Hacker E, Dai X, Lenna S, Jimenez‐Cervantes C, Wang Y, Leslie NR, Xu GX, Widlund HR, Ryu B, Alani RM, Dutton‐Regester K, Goding CR, Hayward NK, Wei W, Cui R ( 2013 ) MC1R is a potent regulator of PTEN after UV exposure in melanocytes. Mol Cell 51: 409 – 422
dc.identifier.citedreferenceChang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH, Woodward WA, Hsu JM, Hortobagyi GN, Hung MC ( 2011 ) EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1‐beta‐catenin signaling. Cancer Cell 19: 86 – 100
dc.identifier.citedreferenceChopra VS, Hendrix DA, Core LJ, Tsui C, Lis JT, Levine M ( 2011 ) The polycomb group mutant esc leads to augmented levels of paused Pol II in the Drosophila embryo. Mol Cell 42: 837 – 844
dc.identifier.citedreferenceDavalos‐Salas M, Furlan‐Magaril M, Gonzalez‐Buendia E, Valdes‐Quezada C, Ayala‐Ortega E, Recillas‐Targa F ( 2011 ) Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter. BMC Cancer 11: 232
dc.identifier.citedreferenceEzhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G, Tarakhovsky A, Fuchs E ( 2009 ) Ezh2 orchestrates gene expression for the stepwise differentiation of tissue‐specific stem cells. Cell 136: 1122 – 1135
dc.identifier.citedreferenceFerlini C, Scambia G ( 2007 ) Assay for apoptosis using the mitochondrial probes, Rhodamine123 and 10‐N‐nonyl acridine orange. Nat Protoc 2: 3111 – 3114
dc.identifier.citedreferenceFerreira JV, Fofo H, Bejarano E, Bento CF, Ramalho JS, Girao H, Pereira P ( 2013 ) STUB1/CHIP is required for HIF1A degradation by chaperone‐mediated autophagy. Autophagy 9: 1349 – 1366
dc.identifier.citedreferenceForbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA ( 2011 ) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39: D945 – D950
dc.identifier.citedreferenceGalluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G ( 2012 ) Molecular mechanisms of cisplatin resistance. Oncogene 31: 1869 – 1883
dc.identifier.citedreferenceGibaja V, Shen F, Harari J, Korn J, Ruddy D, Saenz‐Vash V, Zhai H, Rejtar T, Paris CG, Yu Z, Lira M, King D, Qi W, Keen N, Hassan AQ, Chan HM ( 2016 ) Development of secondary mutations in wild‐type and mutant EZH2 alleles cooperates to confer resistance to EZH2 inhibitors. Oncogene 35: 558 – 566
dc.identifier.citedreferenceGroll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, Powell TK, Lindow S, Kaiser M, Dudler R ( 2008 ) A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452: 755 – 758
dc.identifier.citedreferenceHe D, Xu Q, Yan M, Zhang P, Zhou X, Zhang Z, Duan W, Zhong L, Ye D, Chen W ( 2009 ) The NF‐kappa B inhibitor, celastrol, could enhance the anti‐cancer effect of gambogic acid on oral squamous cell carcinoma. BMC Cancer 9: 343
dc.identifier.citedreferenceJones PA, Baylin SB ( 2007 ) The epigenomics of cancer. Cell 128: 683 – 692
dc.identifier.citedreferenceKaneko S, Li G, Son J, Xu CF, Margueron R, Neubert TA, Reinberg D ( 2010 ) Phosphorylation of the PRC2 component Ezh2 is cell cycle‐regulated and up‐regulates its binding to ncRNA. Genes Dev 24: 2615 – 2620
dc.identifier.citedreferenceKim JH, Resende R, Wennekes T, Chen HM, Bance N, Buchini S, Watts AG, Pilling P, Streltsov VA, Petric M, Liggins R, Barrett S, McKimm‐Breschkin JL, Niikura M, Withers SG ( 2013a ) Mechanism‐based covalent neuraminidase inhibitors with broad‐spectrum influenza antiviral activity. Science 340: 71 – 75
dc.identifier.citedreferenceKim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD, Orkin SH ( 2013b ) Targeted disruption of the EZH2‐EED complex inhibits EZH2‐dependent cancer. Nat Chem Biol 9: 643 – 650
dc.identifier.citedreferenceKim KH, Kim W, Howard TP, Vazquez F, Tsherniak A, Wu JN, Wang W, Haswell JR, Walensky LD, Hahn WC, Orkin SH, Roberts CW ( 2015 ) SWI/SNF‐mutant cancers depend on catalytic and non‐catalytic activity of EZH2. Nat Med 21: 1491 – 1496
dc.identifier.citedreferenceKnutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, Sacks JD, Raimondi A, Majer CR, Song J, Scott MP, Jin L, Smith JJ, Olhava EJ, Chesworth R, Moyer MP, Richon VM, Copeland RA, Keilhack H, Pollock RM et al ( 2012 ) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8: 890 – 896
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.