Show simple item record

Mitigation of Hot Electrons from Laser-Plasma Instabilities in Laser-Generated X-ray Sources

dc.contributor.authorFein, Jeffrey
dc.date.accessioned2017-06-14T18:29:47Z
dc.date.availableNO_RESTRICTION
dc.date.available2017-06-14T18:29:47Z
dc.date.issued2017
dc.date.submitted
dc.identifier.urihttps://hdl.handle.net/2027.42/136933
dc.description.abstractThis thesis describes experiments to understand and mitigate energetic or “hot” electrons from laser-plasma instabilities (LPIs) in an effort to improve radiographic techniques using laser-generated x-ray sources. Initial experiments on the OMEGA-60 laser show evidence of an underlying background generated by x-rays with energies over 10 keV on radiographs using backlit pinhole radiography, whose source is consistent with hard x-rays from LPI-generated hot electrons. Mitigating this background can dramatically reduce uncertainties in measured object densities from radiographs and may be achieved by eliminating the target components in which LPIs are most likely to grow. Experiments were performed on the OMEGA-EP laser to study hot electron production from laser-plasma instabilities in high-Z plasmas relevant to laser-generated x-ray sources. Measurements of hard x-rays show a dramatic reduction in hot-electron energy going from low-Z CH to high-Z Au targets, in a manner that is consistent with steepening electron density profiles that were also measured. The profile-steepening, we infer, increased thresholds of LPIs and contributed to the reduced hot-electron production at higher Z. Possible mechanisms for generating hot electrons include the two-plasmon decay and stimulated Raman scattering instabilities driven by multiple laser beams. Radiation hydrodynamic simulations using the CRASH code predict that both of these instabilities were above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased collisional and Landau damping of electron plasma waves. Another set of experiments were performed on the OMEGA-60 laser to test whether hard x-ray background could be mitigated in backlit pinhole imagers by controlling laser-plasma instabilities. Based on the results above, we hypothesized that LPIs and hot electrons that lead to hard x-ray background would be reduced by increasing the atomic number of the irradiated components in the pinhole imagers. Using higher-Z materials we demonstrate significant reduction in x-rays between 30-70 keV and 70% increase in the signal-to-background ratio. Based on this, a proposed backlighter and detector setup predicts a signal-to-background ratio of up to 4.5:1.
dc.language.isoen_US
dc.subjectLaser plasmas
dc.subjectX-ray sources
dc.subjectRadiography
dc.titleMitigation of Hot Electrons from Laser-Plasma Instabilities in Laser-Generated X-ray Sources
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineNuclear Engineering & Radiological Sciences
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberDrake, R Paul
dc.contributor.committeememberHolloway, James Paul
dc.contributor.committeememberWillingale, Louise
dc.contributor.committeememberKeiter, Paul A
dc.contributor.committeememberThomas, Alexander George Roy
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelScience
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136933/1/jrfein_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.