Show simple item record

Regulating and Securing the Interfaces Across Mobile Apps, OS and Users

dc.contributor.authorFeng, Huan
dc.date.accessioned2017-06-14T18:32:50Z
dc.date.availableNO_RESTRICTION
dc.date.available2017-06-14T18:32:50Z
dc.date.issued2017
dc.date.submitted2017
dc.identifier.urihttps://hdl.handle.net/2027.42/137033
dc.description.abstractOver the past decade, we have seen a swift move towards a mobile-centered world. This thriving mobile ecosystem builds upon the interplay of three important parties: the mobile user, OS, and app. These parties interact via designated interfaces many of which are newly invented for, or introduced to the mobile platform. Nevertheless, as these new ways of interactions arise in the mobile ecosystem, what is enabled by these communication interfaces often violates the expectations of the communicating parties. This makes the foundation of the mobile ecosystem untrustworthy, causing significant security and privacy hazards. This dissertation aims to fill this gap by: 1) securing the conversations between trusted parties, 2) regulating the interactions between partially trusted parties, and 3) protecting the communications between untrusted parties. We first deal with the case of mobile OS and app, and analyze the Inter-Process Communication (IPC) protocol (Android Binder in particular) between these two untrusted parties. We found that the Android OS is frequently making unrealistic assumptions on the validity (sanity) of transactions from apps, thus creating significant security hazards. We analyzed the root cause of this emerging attack surface and protected this interface by developing an effective, precautionary testing framework and a runtime diagnostic tool. Then, we study the deficiency of how a mobile user interacts with an app that he can only partially trust. In the current mobile ecosystem, information about the same user in different apps can be easily shared and aggregated, which clearly violates the conditional trust mobile user has on each app. This issue is addressed by providing two complementary options: an OS-level extension that allows the user to track and control, during runtime, the potential flow of his information across apps; and a user-level solution that allows the users to maintain multiple isolated profiles for each app. Finally, we elaborate on how to secure the voice interaction channel between two trusted parties, mobile user and OS. The open nature of the voice channel makes applications that depend on voice interactions, such as voice assistants, difficult to secure and exposed to various attacks. We solve this problem by proposing the first system, called VAuth, that provides continuous and usable authentication for voice commands, designed as a wearable security token. It collects the body-surface vibrations of a user via an accelerometer and continuously matches them to the voice commands received by the voice assistant. This way, VAuth guarantees that the voice assistant executes only the commands that originate from the voice of the owner. Overall, this thesis examined the privacy and security issues across various interfaces in the mobile ecosystem, analyzed the trust relationship between different parties and proposed practical solutions. It also documented the experience learned from tackling these problems, and can serve as a reference in dealing with similar issues in other domains.
dc.language.isoen_US
dc.subjectMobile Security & Privacy
dc.subjectAndroid
dc.subjectMobile Apps
dc.titleRegulating and Securing the Interfaces Across Mobile Apps, OS and Users
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineComputer Science & Engineering
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberShin, Kang Geun
dc.contributor.committeememberZhang, Zhengya
dc.contributor.committeememberHalderman, J Alex
dc.contributor.committeememberPrakash, Atul
dc.subject.hlbsecondlevelComputer Science
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137033/1/huanfeng_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.