Show simple item record

Structural Results for Coding Over Communication Networks

dc.contributor.authorShirani Chaharsooghi, Farhad
dc.date.accessioned2017-06-14T18:33:36Z
dc.date.availableNO_RESTRICTION
dc.date.available2017-06-14T18:33:36Z
dc.date.issued2017
dc.date.submitted
dc.identifier.urihttps://hdl.handle.net/2027.42/137059
dc.description.abstractWe study the structure of optimality achieving codes in network communications. The thesis consists of two parts: in the first part, we investigate the role of algebraic structure in the performance of communication strategies. In chapter two, we provide a linear coding scheme for the multiple-descriptions source coding problem which improves upon the performance of the best known unstructured coding scheme. In chapter three, we propose a new method for lattice-based codebook generation. The new method leads to a simplification in the analysis of the performance of lattice codes in continuous-alphabet communication. In chapter four, we show that although linear codes are necessary to achieve optimality in certain problems, loosening the closure restriction in the codebook leads to gains in other network communication settings. We introduce a new class of structured codes called quasi-linear codes (QLC). These codes cover the whole spectrum between unstructured codes and linear codes. We develop coding strategies in the interference channel and the multiple-descriptions problems using QLCs which outperform the previous schemes. In the second part, which includes the last two chapters, we consider a different structural restriction on codes used in network communication. Namely, we limit the `effective length' of these codes. First, we consider an arbitrary pair of Boolean functions which operate on two sequences of correlated random variables. We derive a new upper-bound on the correlation between the outputs of these functions. The upper-bound is presented as a function of the `dependency spectrum' of the corresponding Boolean functions. Next, we investigate binary block-codes (BBC). A BBC is defined as a vector of Boolean functions. We consider BBCs which are generated randomly, and using single-letter distributions. We characterize the vector of dependency spectrums of these BBCs. This gives an upper-bound on the correlation between the outputs of two distributed BBCs. Finally, the upper-bound is used to show that the large blocklength single-letter coding schemes in the literature are sub-optimal in various multiterminal communication settings.
dc.language.isoen_US
dc.subjectMultiterminal Communication
dc.subjectInformation Theory
dc.subjectLinear Code
dc.subjectLattice Code
dc.subjectNetwork Communication
dc.subjectMaximum Correlation
dc.titleStructural Results for Coding Over Communication Networks
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineering: Systems
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberPradhan, S Sandeep
dc.contributor.committeememberStrauss, Martin J
dc.contributor.committeememberAnastasopoulos, Achilleas
dc.contributor.committeememberNarayan, Prakash
dc.contributor.committeememberNeuhoff, David L
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137059/1/fshirani_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.