Show simple item record

Studies of Young, Star-forming Circumstellar Disks

dc.contributor.authorBae, Jaehan
dc.date.accessioned2017-06-14T18:34:54Z
dc.date.availableNO_RESTRICTION
dc.date.available2017-06-14T18:34:54Z
dc.date.issued2017
dc.date.submitted
dc.identifier.urihttps://hdl.handle.net/2027.42/137100
dc.description.abstractDisks of gas and dust around forming stars -- circumstellar disks -- last only a few million years. This is a very small fraction of the entire lifetime of Sun-like stars, several billion years. Nevertheless, by the time circumstellar disks dissipate stars complete building up their masses, giant planets finish accreting gas, and terrestrial bodies are nearly fully grown and ready for their final assembly to become planets. Understanding the evolution of circumstellar disks are thus crucial in many contexts. Using numerical simulations as the primary tool, my thesis has focused on the studies of various physical processes that can occur throughout the lifetime of circumstellar disks, from their formation to dispersal. Chapters 2, 3, and 4 emphasize the importance of early evolution, during which time a forming star-disk system obtains mass from its natal cloud: the infall phase. In Chapter 2 and 3, I have modeled episodic outbursts of accretion in protostellar systems resulting from disk instabilities -- gravitational instability and magnetorotational instability. I showed that outbursts occur preferentially during the infall phase, because the mass addition provides more favorable conditions for gravitational instability to initiate the outburst cycle, and that forming stars build up a significant fraction of their masses through repeated short-lived, episodic outbursts. The infall phase can also be important for the formation of planets. Recent ALMA observations revealed sets of bright and dark rings in circumstellar disks of young, forming stars, potentially indicating early formation of planets. In Chapter 4, I showed that infall streams can create radial pressure bumps near the outer edge of the mass landing on the disk, from which vortices can form, collecting solid particles very efficiently to make initial seeds of planets. The next three chapters highlight the role of planets in setting the observational appearance and the evolution of circumstellar disks. When a planet forms in a disk, the gravitational interaction between the planet and disk can create structures, such as spiral arms and gaps. In Chapter 5, I compared the disk structures formed by planetary companions in numerical simulations with the observed structures in the disk surrounding an 8 Myr-old Herbig Ae star SAO 206462. Based on the experiments, I made predictions for the mass and position of a currently unrevealed planet, which can help guide future observations to search for more conclusive evidence for the existence of a planetary companion in the system. In Chapter 6, I showed for the first time in global simulation domains that spiral waves, driven for instance by planets or gravitational instability, can be unstable due to resonant interactions with inertial modes, breaking into turbulence. In Chapter 7, I showed that the spiral wave instability operates on the waves launched by planets and that the resulting turbulence can significantly stir up solid particles from the disk midplane. The stirring of solid particles can have influences on the observation appearance of the parent disk and on the subsequent assembly of planetary bodies in the disk. Finally, in Chapter 8, I investigated the dispersal of circumstellar disks via photoevaporative winds, finding that the photoevaporative loss alone, coupled with a range of initial angular momenta of protostellar clouds, can explain the observed decline of the disk frequency with increasing age. The findings and future possibilities are summarized in Chapter 9.
dc.language.isoen_US
dc.subjectcircumstellar disks
dc.subjectplanet-disk interactions
dc.subjectplanet formation
dc.subjecthydrodynamics
dc.subjectinstabilities
dc.titleStudies of Young, Star-forming Circumstellar Disks
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineAstronomy and Astrophysics
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberHartmann, Lee William
dc.contributor.committeememberAdams, Fred C
dc.contributor.committeememberBergin, Edwin Anthony
dc.contributor.committeememberCalvet, Nuria Pilar
dc.contributor.committeememberNelson, Richard P
dc.subject.hlbsecondlevelAstronomy
dc.subject.hlbtoplevelScience
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137100/1/jaehbae_1.pdf
dc.identifier.orcid0000-0001-7258-770X
dc.identifier.name-orcidBae, Jaehan; 0000-0001-7258-770Xen_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.