Engineered Transition Metal Chalcogenides for Photovoltaic, Thermoelectric, and Magnetic Applications
dc.contributor.author | Moroz, Nicholas | |
dc.date.accessioned | 2017-06-14T18:35:36Z | |
dc.date.available | NO_RESTRICTION | |
dc.date.available | 2017-06-14T18:35:36Z | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/137119 | |
dc.description.abstract | This work focuses on the development of ternary and quaternary chalcogenide compounds featuring transition metal cations through careful engineering of the electronic and thermal transport as well as magnetic properties by traditional solid-state doping techniques and novel template structure synthesis methods for improvements in thermoelectric performance, diluted magnetic semiconductors, and photovoltaic conversion. Presented here is an innovative low-temperature batch synthesis that was developed to create hexagonal nanoplatelets of thermoelectrically interesting CuAgSe. This process utilized room temperature ion exchange reactions to convert cubic Cu2-xSe nanoplatelets into CuAgSe by replacing a portion of the Cu+ ions with Ag+ while maintaining the morphology of the nanoplatelet. This simple reaction process offers an energy efficient and versatile strategy to create interesting materials with superior thermoelectric performance. An investigation of the thermal and electronic transport of CuAl(SxSe1-x)2 solid solutions was also conducted. While these compounds yielded low thermal conductivity, they also exhibited low electronic conductivity. Doping with transition metals Ag, Hf, and Ti further reduced the thermal conductivity below 1 W/mK; however, most exciting was the determination that the thermal transport of the system could be modified by doping at the Al3+ site without affecting the electronic structure of the system, potentially leading to the use of CuAl(SxSe1-x)2 as a heavily doped thermoelectric material. The effect of local carrier concentration in the diluted magnetic semiconductor FeSb2Se4 was studied by substitution of In3+ for Sb3+. Using systematic Rietveld refinement, it was determined that In3+ resides in the semiconducting layer of the structure for concentrations of x ≤ 0.1, and the magnetic layer for x > 0.1. The increase in local carrier concentration has an appreciable effect on the electronic and magnetic properties of the material in a predictable manner based on the concentration of In3+. Lastly, two new perovskite-like selenides were developed using low-pressure synthesis methods, needle-like SrHfSe3 and distorted perovskite BaHfSe3. The optical band gap of SrHfSe3 was experimentally determined to be 1.15 eV by doping of Sb3+ for Sr2+, and 1.6 eV for BaHfSe3, both in the ideal range for visible light absorption. Thus, these new materials are intriguing candidates for thin-film photovoltaic applications. | |
dc.language.iso | en_US | |
dc.subject | Transition metal chalcogenides | |
dc.subject | Thermoelectrics | |
dc.subject | Diluted magnetic semiconductors | |
dc.subject | Photovoltaics | |
dc.title | Engineered Transition Metal Chalcogenides for Photovoltaic, Thermoelectric, and Magnetic Applications | |
dc.type | Thesis | en_US |
dc.description.thesisdegreename | PhD | en_US |
dc.description.thesisdegreediscipline | Materials Science and Engineering | |
dc.description.thesisdegreegrantor | University of Michigan, Horace H. Rackham School of Graduate Studies | |
dc.contributor.committeemember | Poudeu-Poudeu, Pierre Ferdinand | |
dc.contributor.committeemember | Bartlett, Bart | |
dc.contributor.committeemember | Kioupakis, Emmanouil | |
dc.contributor.committeemember | Thornton, Katsuyo S | |
dc.subject.hlbsecondlevel | Materials Science and Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/137119/1/nmoroz_1.pdf | |
dc.owningcollname | Dissertations and Theses (Ph.D. and Master's) |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.