Show simple item record

Self‐Sacrificial Template‐Directed Synthesis of Metal–Organic Framework‐Derived Porous Carbon for Energy‐Storage Devices

dc.contributor.authorDing, Bing
dc.contributor.authorWang, Jie
dc.contributor.authorChang, Zhi
dc.contributor.authorXu, Guiyin
dc.contributor.authorHao, Xiaodong
dc.contributor.authorShen, Laifa
dc.contributor.authorDou, Hui
dc.contributor.authorZhang, Xiaogang
dc.date.accessioned2017-06-16T20:07:10Z
dc.date.available2017-06-16T20:07:10Z
dc.date.issued2016-04
dc.identifier.citationDing, Bing; Wang, Jie; Chang, Zhi; Xu, Guiyin; Hao, Xiaodong; Shen, Laifa; Dou, Hui; Zhang, Xiaogang (2016). "Self‐Sacrificial Template‐Directed Synthesis of Metal–Organic Framework‐Derived Porous Carbon for Energy‐Storage Devices." ChemElectroChem 3(4): 668-674.
dc.identifier.issn2196-0216
dc.identifier.issn2196-0216
dc.identifier.urihttps://hdl.handle.net/2027.42/137193
dc.description.abstractMetal–organic framework (MOF)‐derived carbon materials exhibit large surface areas, but dominant micropore characteristics and uncontrollable dimensions. Herein, we propose a self‐sacrificial template‐directed synthesis method to engineer the porous structure and dimensions of MOF‐derived carbon materials. A porous zinc oxide (ZnO) nanosheet solid is selected as the self‐sacrificial template and two‐dimensional (2D) nanostructure‐directing agent to prepare 2D ZIF‐8‐derived carbon nanosheets (ZCNs). The as‐prepared ZCN materials exhibit a large surface area with hierarchical porosity. These intriguing features render ZCN materials advanced electrode materials for electrochemical energy‐storage devices, demonstrating large ion‐accessible surface area and high ion‐/electron‐transport rates. This self‐sacrificial template‐directed synthesis method offers new avenues for rational engineering of the porous structure and dimensions of MOF‐derived porous carbon materials, thus exploiting their full potential for electrochemical energy‐storage devices.On the surface: A self‐sacrificial template‐directed synthesis method is proposed to engineer the porosity and dimensions of MOF‐derived carbon materials. By using a porous nanosheet solid as the self‐sacrificial template and two‐dimensional (2D) nanostructure‐directing agent, 2D ZIF‐8‐derived carbon nanosheets are prepared, which exhibit a large ion‐accessible surface area and rapid ion transport as the electrode materials for electrochemical energy‐storage devices.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermetal–organic framework
dc.subject.otherself-sacrificial template
dc.subject.othertwo-dimensional carbons
dc.subject.otherelectrochemistry
dc.subject.otherhierarchical porosity
dc.titleSelf‐Sacrificial Template‐Directed Synthesis of Metal–Organic Framework‐Derived Porous Carbon for Energy‐Storage Devices
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137193/1/celc201500536-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137193/2/celc201500536.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137193/3/celc201500536_am.pdf
dc.identifier.doi10.1002/celc.201500536
dc.identifier.sourceChemElectroChem
dc.identifier.citedreferenceJ. Zhong, J.-J. Deng, B.-H. Mao, T. Xie, X.-H. Sun, Z.-G. Mou, C.-H. Hong, P. Yang, S.-D. Wang, Carbon 2012, 50, 335.
dc.identifier.citedreferenceW. W. Zhan, Q. Kuang, J. Z. Zhou, X. J. Kong, Z. X. Xie, L. S. Zheng, J. Am. Chem. Soc. 2013, 135, 1926.
dc.identifier.citedreferenceP. Strubel, S. Thieme, T. Biemelt, A. Helmer, M. Oschatz, J. Brückner, H. Althues, S. Kaskel, Adv. Funct. Mater. 2015, 25, 287.
dc.identifier.citedreferenceA. C. Ferrari, D. M. Basko, Nat. Nanotechnol. 2013, 8, 235.
dc.identifier.citedreferenceA. J. Amali, J. K. Sun, Q. Xu, Chem. Commun. 2014, 50, 1519.
dc.identifier.citedreference 
dc.identifier.citedreferenceL.-S. Zhang, X.-Q. Liang, W.-G. Song, Z.-Y. Wu, Phys. Chem. Chem. Phys. 2010, 12, 12055;
dc.identifier.citedreferenceZ. Li, Z. Xu, X. Tan, H. Wang, C. M. B. Holt, T. Stephenson, B. C. Olsen, D. Mitlin, Energy Environ. Sci. 2013, 6, 871.
dc.identifier.citedreferenceH. Wang, L. Zhi, K. Liu, L. Dang, Z. Liu, Z. Lei, C. Yu, J. Qiu, Adv. Funct. Mater. 2015, 25, 5420.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Manthiram, Y. Z. Fu, Y. S. Su, Acc. Chem. Res. 2013, 46, 1125;
dc.identifier.citedreferenceY. Yang, G. Zheng, Y. Cui, Chem. Soc. Rev. 2013, 42, 3018;
dc.identifier.citedreferenceL. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, Adv. Mater. 2012, 24, 1176;
dc.identifier.citedreferenceC. Wu, L. Fu, J. Maier, Y. Yu, J. Mater. Chem. A 2015, 3, 9438.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. D. Liang, N. J. Dudney, J. Y. Howe, Chem. Mater. 2009, 21, 4724;
dc.identifier.citedreferenceJ. Guo, Y. Xu, C. Wang, Nano Lett. 2011, 11, 4288;
dc.identifier.citedreferenceL. Zeng, F. Pan, W. Li, Y. Jiang, X. Zhong, Y. Yu, Nanoscale 2014, 6, 9579.
dc.identifier.citedreference 
dc.identifier.citedreferenceZ. Li, Y. Jiang, L. Yuan, Z. Yi, C. Wu, Y. Liu, P. Strasser, Y. Huang, ACS Nano 2014, 8, 9295;
dc.identifier.citedreferenceS. Xin, L. Gu, N. H. Zhao, Y. X. Yin, L. J. Zhou, Y. G. Guo, L. J. Wan, J. Am. Chem. Soc. 2012, 134, 18510.
dc.identifier.citedreference 
dc.identifier.citedreferenceN. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. Int. Ed. 2011, 50, 5904; Angew. Chem. 2011, 123, 6026;
dc.identifier.citedreferenceG. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei, I. R. Gentle, F. Li, H.-M. Cheng, ACS Nano 2013, 7, 5367;
dc.identifier.citedreferenceW. Kong, L. Sun, Y. Wu, K. Jiang, Q. Li, J. Wang, S. Fan, Carbon 2016, 96, 1053.
dc.identifier.citedreferenceJ. Song, T. Xu, M. L. Gordin, P. Zhu, D. Lv, Y.-B. Jiang, Y. Chen, Y. Duan, D. Wang, Adv. Funct. Mater. 2014, 24, 1243;
dc.identifier.citedreferenceY. Qiu, W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, L. Zhou, F. Ye, H. Li, Z. Wei, S. Yang, W. Duan, Y. Ye, J. Guo, Y. Zhang, Nano Lett. 2014, 14, 4821.
dc.identifier.citedreference 
dc.identifier.citedreferenceP. Simon, Y. Gogotsi, Acc. Chem. Res. 2013, 46, 1094;
dc.identifier.citedreferenceF. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, V. Pellegrini, Science 2015, 347, 1246501.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J.-G. Zhang, Y. Wang, J. Liu, J. Li, G. Cao, Nano Energy 2012, 1, 195;
dc.identifier.citedreferenceL. Hao, X. Li, L. Zhi, Adv. Mater. 2013, 25, 3899;
dc.identifier.citedreferenceY. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537;
dc.identifier.citedreferenceX. L. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500;
dc.identifier.citedreferenceQ. Sun, B. He, X.-Q. Zhang, A.-H. Lu, ACS Nano 2015, 9, 8504;
dc.identifier.citedreferenceJ. T. Lee, Y. Zhao, S. Thieme, H. Kim, M. Oschatz, L. Borchardt, A. Magasinski, W.-I. Cho, S. Kaskel, G. Yushin, Adv. Mater. 2013, 25, 4573.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ.-K. Sun, Q. Xu, Energy Environ. Sci. 2014, 7, 2071;
dc.identifier.citedreferenceJ. Tang, R. R. Salunkhe, J. Liu, N. L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, J. Am. Chem. Soc. 2015, 137, 1572;
dc.identifier.citedreferenceF. Zheng, Y. Yang, Q. Chen, Nat. Commun. 2014, 5, 5261.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. J. Yang, T. Kim, J. H. Im, Y. S. Kim, K. Lee, H. Jung, C. R. Park, Chem. Mater. 2012, 24, 464;
dc.identifier.citedreferenceW. Chaikittisilp, M. Hu, H. Wang, H. S. Huang, T. Fujita, K. C. Wu, L. C. Chen, Y. Yamauchi, K. Ariga, Chem. Commun. 2012, 48, 7259;
dc.identifier.citedreferenceS. Lim, K. Suh, Y. Kim, M. Yoon, H. Park, D. N. Dybtsev, K. Kim, Chem. Commun. 2012, 48, 7447;
dc.identifier.citedreferenceN. L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, Y. Yamauchi, Chem. Commun. 2013, 49, 2521;
dc.identifier.citedreferenceJ.-W. Jeon, R. Sharma, P. Meduri, B. W. Arey, H. T. Schaef, J. L. Lutkenhaus, J. P. Lemmon, P. K. Thallapally, M. I. Nandasiri, B. P. McGrail, S. K. Nune, ACS Appl. Mater. Interfaces 2014, 6, 7214;
dc.identifier.citedreferenceL. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li, M. Hong, Nanoscale 2014, 6, 6590;
dc.identifier.citedreferenceK. Xi, S. Cao, X. Peng, C. Ducati, R. V. Kumar, A. K. Cheetham, Chem. Commun. 2013, 49, 2192;
dc.identifier.citedreferenceH. B. Wu, S. Wei, L. Zhang, R. Xu, H. H. Hng, X. W. Lou, Chem. Eur. J. 2013, 19, 10804;
dc.identifier.citedreferenceG. Y. Xu, B. Ding, L. F. Shen, P. Nie, J. P. Han, X. G. Zhang, J. Mater. Chem. A 2013, 1, 4490.
dc.identifier.citedreference 
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Dutta, A. Bhaumik, K. C. W. Wu, Energy Environ. Sci. 2014, 7, 3574;
dc.identifier.citedreferenceD. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew. Chem. Int. Ed. 2008, 47, 373; Angew. Chem. 2008, 120, 379;
dc.identifier.citedreferenceM. Oschatz, L. Borchardt, K. Pinkert, S. Thieme, M. R. Lohe, C. Hoffmann, M. Benusch, F. M. Wisser, C. Ziegler, L. Giebeler, M. H. Ruemmeli, J. Eckert, A. Eychmueller, S. Kaskel, Adv. Energy Mater. 2014, 4, 1300645;
dc.identifier.citedreferenceT. Kim, G. Jung, S. Yoo, K. S. Suh, R. S. Ruoff, ACS Nano 2013, 7, 6899.
dc.identifier.citedreference 
dc.identifier.citedreferenceX. Zheng, J. Luo, W. Lv, D. W. Wang, Q. H. Yang, Adv. Mater. 2015, 27, 5388;
dc.identifier.citedreferenceL. Dai, D. W. Chang, J.-B. Baek, W. Lu, Small 2012, 8, 1130.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T. J. Stephenson, C. K. King′ondu, C. M. Holt, B. C. Olsen, ACS Nano 2013, 7, 5131;
dc.identifier.citedreferenceX. Yang, L. Zhang, F. Zhang, Y. Huang, Y. Chen, ACS Nano 2014, 8, 5208;
dc.identifier.citedreferenceM. Q. Zhao, Q. Zhang, J. Q. Huang, G. L. Tian, J. Q. Nie, H. J. Peng, F. Wei, Nat. Commun. 2014, 5, 3410.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, J. Am. Chem. Soc. 2014, 136, 14385;
dc.identifier.citedreferenceH. J. Lee, S. Choi, M. Oh, Chem. Commun. 2014, 50, 4492;
dc.identifier.citedreferenceH. X. Zhong, J. Wang, Y. W. Zhang, W. L. Xu, W. Xing, D. Xu, Y. F. Zhang, X. B. Zhang, Angew. Chem. Int. Ed. 2014, 53, 14235; Angew. Chem. 2014, 126, 14459;
dc.identifier.citedreferenceJ.-K. Sun, Q. Xu, Chem. Commun. 2014, 50, 13502.
dc.identifier.citedreference 
dc.identifier.citedreferenceY.-L. Ding, J. Xie, G.-S. Cao, T.-J. Zhu, H.-M. Yu, X.-B. Zhao, Adv. Funct. Mater. 2011, 21, 348;
dc.identifier.citedreferenceF. Zou, X. Hu, Z. Li, L. Qie, C. Hu, R. Zeng, Y. Jiang, Y. Huang, Adv. Mater. 2014, 26, 6622;
dc.identifier.citedreferenceE. Zanchetta, L. Malfatti, R. Ricco, M. J. Styles, F. Lisi, C. J. Coghlan, C. J. Doonan, A. J. Hill, G. Brusatin, P. Falcaro, Chem. Mater. 2015, 27, 690;
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.