Show simple item record

Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin–Copper Corrole Donor–Acceptor Conjugates

dc.contributor.authorNgo, Thien H.
dc.contributor.authorZieba, David
dc.contributor.authorWebre, Whitney A.
dc.contributor.authorLim, Gary N.
dc.contributor.authorKarr, Paul A.
dc.contributor.authorKord, Scheghajegh
dc.contributor.authorJin, Shangbin
dc.contributor.authorAriga, Katsuhiko
dc.contributor.authorGalli, Marzia
dc.contributor.authorGoldup, Steve
dc.contributor.authorHill, Jonathan P.
dc.contributor.authorD’Souza, Francis
dc.date.accessioned2017-06-16T20:07:26Z
dc.date.available2017-06-16T20:07:26Z
dc.date.issued2016-01
dc.identifier.citationNgo, Thien H.; Zieba, David; Webre, Whitney A.; Lim, Gary N.; Karr, Paul A.; Kord, Scheghajegh; Jin, Shangbin; Ariga, Katsuhiko; Galli, Marzia; Goldup, Steve; Hill, Jonathan P.; D’Souza, Francis (2016). "Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin–Copper Corrole Donor–Acceptor Conjugates." Chemistry – A European Journal 22(4): 1301-1312.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/137205
dc.description.abstractAn electron‐deficient copper(III) corrole was utilized for the construction of donor–acceptor conjugates with zinc(II) porphyrin (ZnP) as a singlet excited state electron donor, and the occurrence of photoinduced charge separation was demonstrated by using transient pump–probe spectroscopic techniques. In these conjugates, the number of copper corrole units was varied from 1 to 2 or 4 units while maintaining a single ZnP entity to observe the effect of corrole multiplicity in facilitating the charge‐separation process. The conjugates and control compounds were electrochemically and spectroelectrochemically characterized. Computational studies revealed ground state geometries of the compounds and the electron‐deficient nature of the copper(III) corrole. An energy level diagram was established to predict the photochemical events by using optical, emission, electrochemical, and computational data. The occurrence of charge separation from singlet excited zinc porphyrin and charge recombination to yield directly the ground state species were evident from the diagram. Femtosecond transient absorption spectroscopy studies provided spectral evidence of charge separation in the form of the zinc porphyrin radical cation and copper(II) corrole species as products. Rates of charge separation in the conjugates were found to be of the order of 1010 s−1 and increased with increasing multiplicity of copper(III) corrole entities. The present study demonstrates the importance of copper(III) corrole as an electron acceptor in building model photosynthetic systems.Donor–acceptor conjugates based on zinc porphyrin as the electron donor and copper(III) corrole as the electron acceptor have been successfully prepared with outstanding yields. Electrochemical and computational studies revealed the electron‐deficient nature of copper(III) corrole, leading to phenomena of photoinduced electron transfer from the singlet excited zinc porphyrin to copper corrole, as demonstrated by femtosecond transient spectroscopy.
dc.publisherWorld Scientific
dc.publisherWiley Periodicals, Inc.
dc.subject.otherelectron transfer
dc.subject.otherporphyrins
dc.subject.othersupramolecular chemistry
dc.subject.othercopper(III) corroles
dc.titleEngaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin–Copper Corrole Donor–Acceptor Conjugates
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137205/1/chem201503490.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137205/2/chem201503490-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/chem.201503490
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceR. Guilard, C. P. Gros, J. M. Barbe, E. Espinosa, F. Jerome, A. Tabard, J. M. Latour, J. Shao, Z. Ou, K. M. Kadish, Inorg. Chem. 2004, 43, 7441 – 7455.
dc.identifier.citedreferenceK. M. Kadish, L. Fremond, J. Shen, P. Chen, K. Ohkubo, S. Fukuzumi, M. El Ojaimi, C. P. Gros, J. M. Barbe, R. Guilard, Inorg. Chem. 2009, 48, 2571 – 2582.
dc.identifier.citedreferenceK. M. Kadish, L. Fremond, Z. P. Ou, J. G. Shao, C. N. Shi, F. C. Anson, F. Burdet, C. P. Gros, J. M. Barbe, R. Guilard, J. Am. Chem. Soc. 2005, 127, 5625 – 5631.
dc.identifier.citedreferenceK. M. Kadish, J. Shao, Z. Ou, L. Fremond, R. Zhan, F. Burdet, J. M. Barbe, C. P. Gros, R. Guilard, Inorg. Chem. 2005, 44, 6744 – 6754.
dc.identifier.citedreferenceK. M. Kadish, J. Shao, Z. Ou, R. Zhan, F. Burdet, J. M. Barbe, C. P. Gros, R. Guilard, Inorg. Chem. 2005, 44, 9023 – 9038.
dc.identifier.citedreferenceR. Guilard, F. Burdet, J. M. Barbe, C. P. Gros, E. Espinosa, J. Shao, Z. Ou, R. Zhan, K. M. Kadish, Inorg. Chem. 2005, 44, 3972 – 3983.
dc.identifier.citedreferenceC. P. Gros, F. Brisach, A. Meristoudi, E. Espinosa, R. Guilard, P. D. Harvey, Inorg. Chem. 2007, 46, 125 – 135.
dc.identifier.citedreferenceJ. M. Barbe, F. Burdet, E. Espinosa, C. P. Gros, R. Guilard, J. Porphyrins Phthalocyanines 2003, 7, 365 – 374.
dc.identifier.citedreferenceF. Jerome, C. P. Gros, C. Tardieux, J.-M. Barbe, R. Guilard, New J. Chem. 1998, 22, 1327 – 1329.
dc.identifier.citedreferenceS. Hiroto, I. Hisaki, H. Shinokubo, A. Osuka, Angew. Chem. Int. Ed. 2005, 44, 6763 – 6766; Angew. Chem. 2005, 117, 6921 – 6924.
dc.identifier.citedreferenceA. I. Ciuciu, L. Flamigni, R. Voloshchuk, D. T. Gryko, Chem. Asian J. 2013, 8, 1004 – 1014.
dc.identifier.citedreferenceL. Flamigni, B. Ventura, M. Tasior, D. T. Gryko, Inorg. Chim. Acta 2007, 360, 803 – 813.
dc.identifier.citedreferenceT. H. Ngo, F. Nastasi, F. Puntoriero, S. Campagna, W. Dehaen, W. Maes, Eur. J. Org. Chem. 2012, 5605 – 5617.
dc.identifier.citedreferenceT. H. Ngo, W. Van Rossom, W. Dehaen, W. Maes, Org. Biomol. Chem. 2009, 7, 439 – 443.
dc.identifier.citedreferenceW. Beenken, M. Presselt, T. H. Ngo, W. Dehaen, W. Maes, M. Kruk, J. Phys. Chem. A 2014, 118, 862 – 871.
dc.identifier.citedreferenceY. B. Ivanova, V. A. Savva, N. Z. Mamardashvili, A. S. Starukhin, T. H. Ngo, W. Dehaen, W. Maes, M. M. Kruk, J. Phys. Chem. A 2012, 116, 10683 – 10694.
dc.identifier.citedreferenceM. Kruk, T. H. Ngo, V. Savva, A. Starukhin, W. Dehaen, W. Maes, J. Phys. Chem. A 2012, 116, 10704 – 10711.
dc.identifier.citedreferenceM. Kruk, T. H. Ngo, P. Verstappen, A. Starukhin, J. Hofkens, W. Dehaen, W. Maes, J. Phys. Chem. A 2012, 116, 10695 – 10703.
dc.identifier.citedreferenceW. Maes, T. H. Ngo, J. Vanderhaeghen, W. Dehaen, Org. Lett. 2007, 9, 3165 – 3168.
dc.identifier.citedreferenceF. Nastasi, S. Campagna, T. H. Ngo, W. Dehaen, W. Maes, M. Kruk, Photochem. Photobiol. Sci. 2011, 10, 143 – 150.
dc.identifier.citedreferenceT. H. Ngo, F. Puntoriero, F. Nastasi, K. Robeyns, L. Van Meervelt, S. Campagna, W. Dehaen, W. Maes, Chem. Eur. J. 2010, 16, 5691 – 5705.
dc.identifier.citedreferenceN. K. Devaraj, R. A. Decreau, W. Ebina, J. P. Collman, C. E. D. Chidsey, J. Phys. Chem. B 2006, 110, 15955 – 15962.
dc.identifier.citedreferenceL. C. Le Pleux, Y. Pellegrin, E. Blart, F. Odobel, A. Harriman, J. Phys. Chem. A 2011, 115, 5069 – 5080.
dc.identifier.citedreferenceDuring the course of this work, Nikolaou and co-workers reported a synthesis (also using the click reaction) of a porphyrin–corrole dyad and some of its photophysical and electrochemical properties. They assigned the phenomenon of fluorescence quenching in their dyad as a possible symptom of electron transfer from porphyrin to copper corrole although this was not unequivocally demonstrated. See ref. [5i].
dc.identifier.citedreferenceV. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596 – 2599; Angew. Chem. 2002, 114, 2708 – 2711.
dc.identifier.citedreferenceGaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
dc.identifier.citedreferenceC. Shao, X. Wang, J. Xu, J. Zhao, Q. Zhang, Y. Hu, J. Org. Chem. 2010, 75, 7002 – 7005.
dc.identifier.citedreferenceC. Shao, X. Wang, Q. Zhang, S. Luo, J. Zhao, Y. Hu, J. Org. Chem. 2011, 76, 6832 – 6836.
dc.identifier.citedreferenceD. Rehm, A. Weller, Isr. J. Chem. 1970, 8, 259 – 271.
dc.identifier.citedreferenceY. Wang, Z. Wang, X. Guo, R. Cui, X. Gai, S. Yang, F. Chang, J. Dong, B. Sun, J. Nanosci. Nanotechnol. 2014, 14, 5370 – 5374;
dc.identifier.citedreferenceB. Bursa, D. Wrobel, K. Lewandowska, A. Graja, M. Grzybowski, D. T. Gryko, Synth. Met. 2013, 176, 18 – 25;
dc.identifier.citedreferenceK. Lewandowska, B. Barszca, J. Wolak, A. Graja, M. Grzybowski, D. T. Gryko, Dyes Pigm. 2013, 96, 249 – 255;
dc.identifier.citedreferenceK. Sudhakar, S. Gokulnath, L. Giribabu, G. N. Lim, T. Tram, F. D′Souza, Chem. Asian J. 2015, 10, 2708 – 2719;
dc.identifier.citedreferenceV. Nikolaou, K. Karikis, Y. Farre, G. Charalambidis, F. Odobel, A. G. Coutsolelos, Dalton Trans. 2015, 44, 13473 – 13479;
dc.identifier.citedreference 
dc.identifier.citedreferenceN. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729 – 15735;
dc.identifier.citedreferenceP. V. Kamat, J. Phys. Chem. C 2007, 111, 2834 – 2860;
dc.identifier.citedreferenceT. Umeyama, H. Imahori, Energy Environ. Sci. 2008, 1, 120 – 133;
dc.identifier.citedreferenceT. Hasobe, Phys. Chem. Chem. Phys. 2010, 12, 44 – 57;
dc.identifier.citedreferenceV. Balzani, A. Credi, M. Venturi, ChemSusChem 2008, 1, 26 – 58.
dc.identifier.citedreference 
dc.identifier.citedreferenceEnergy Harvesting Materials, (Ed.: D. L. Andrews ), World Scientific, Singapore, 2005;
dc.identifier.citedreferenceM. R. Wasielewski, Acc. Chem. Res. 2009, 42, 1910 – 1921;
dc.identifier.citedreferenceD. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2009, 42, 1890 – 1898;
dc.identifier.citedreferenceJ. L. Sessler, C. M. Lawrence, J. Jayawickramarajah, Chem. Soc. Rev. 2007, 36, 314 – 325;
dc.identifier.citedreferenceS. Fukuzumi, K. Ohkubo, J. Mater. Chem. 2012, 22, 4575 – 4587;
dc.identifier.citedreferenceD. M. Guldi, G. M. A. Rahman, F. Zerbetto, M. Prato, Acc. Chem. Res. 2005, 38, 871 – 878;
dc.identifier.citedreferenceL. Sánchez, N. Martín, D. M. Guldi, Angew. Chem. Int. Ed. 2005, 44, 5374 – 5382; Angew. Chem. 2005, 117, 5508 – 5516;
dc.identifier.citedreferenceS. Fukuzumi, Phys. Chem. Chem. Phys. 2008, 10, 2283 – 2297;
dc.identifier.citedreferenceM. E. El-Khouly, O. Ito, P. M. Smith, F. D′Souza, J. Photochem. Photobiol. C 2004, 5, 79 – 104;
dc.identifier.citedreferenceS. Fukuzumi, K. Ohkubo, F. D′Souza, J. L. Sessler, Chem. Commun. 2012, 48, 9801 – 9815.
dc.identifier.citedreferenceThe Porphyrin Handbook (Eds.: K. M. Kadish, K. M. Smith, R. Guilard ), Academic Press, San Diego, 2000, Vol.  1 – 20.
dc.identifier.citedreference 
dc.identifier.citedreferencePhthalocyanine: Properties and Applications (Eds.: C. C. Leznoff, A. B. P. Lever ), VCH, Weinheim, 1993;
dc.identifier.citedreferenceG. Bottaria, O. Trukhinaa, M. Incea, T. Torres, Coord. Chem. Rev. 2012, 256, 2453 – 2477;
dc.identifier.citedreferenceA. Satake, Y. Kobuke, Org. Biomol. Chem. 2007, 5, 1679 – 1691.
dc.identifier.citedreference 
dc.identifier.citedreferenceF. D′Souza, R. Chitta, K. Ohkubo, M. Tasior, N. K. Subbaiyan, M. E. Zandler, M. K. Rogacki, D. T. Gryko, S. Fukuzumi, J. Am. Chem. Soc. 2008, 130, 14263 – 14272;
dc.identifier.citedreferenceG. Rotas, G. Chralambidis, L. Glatzl, D. T. Gryko, A. Kahnt, A. G. Coutsolelos, N. Tagmatarchis, Chem. Commun. 2013, 49, 9128 – 9130;
dc.identifier.citedreferenceB. Liu, L. Hongyun, C. Xiaofang, B. Wenting, R. Lipiao, M. Rudolf, F. Plass, L. Fan, X. Lu, D. M. Guldi, Chem. Eur. J. 2015, 21, 746 – 752;
dc.identifier.citedreferenceC. Li, J. Zhang, Z. Xiujun, Y. Zhou, D. Sun, P. Cheng, B. Zhang, Y. Feng, RSC Adv. 2014, 4, 40758 – 40762;
dc.identifier.citedreferenceH. L. Buckley, L. K. Rubin, M. Chrominski, B. J. McNicholas, K. H. Y. Tsen, D. T. Gryko, J. Arnold, Inorg. Chem. 2014, 53, 7941 – 7950.
dc.identifier.citedreference 
dc.identifier.citedreferenceN. Kobayashi, R. Kondo, S. Nakajima, T. Osa, J. Am. Chem. Soc. 1990, 112, 9640 – 9641;
dc.identifier.citedreferenceC. G. Claessens, D. González-Rodriguez, M. S. Rodriguez-Morgade, A. Medina, T. Torres, Chem. Rev. 2014, 114, 2192 – 2277;
dc.identifier.citedreferenceC. B. KC, G. N. Lim, F. D′Souza, Angew. Chem. Int. Ed. 2015, 54, 5088 – 5092; Angew. Chem. 2015, 127, 5177 – 5181;
dc.identifier.citedreferenceM. Rudolf, O. Trukhina, J. Perles, L. Feng, T. Akasaka, T. Torres, D. M. Guldi, Chem. Sci. 2015, 6, 4141 – 4147.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47, 1184 – 1201; Angew. Chem. 2008, 120, 1202 – 1219;
dc.identifier.citedreferenceM. El-Khouly, S. Fukuzumi, F. D′Souza, ChemPhysChem 2014, 15, 30 – 47;
dc.identifier.citedreferenceJ.-Y. Liu, Y. Huang, R. Menting, B. Röder, E. A. Ermilov, D. K. P. Ng, Chem. Commun. 2013, 49, 2998 – 3000;
dc.identifier.citedreferenceC. B. KC, G. N. Lim, V. N. Nesterov, P. A. Karr, F. D′Souza, Chem. Eur. J. 2014, 20, 17100 – 17112.
dc.identifier.citedreferenceM. Fujitsuka, Chem. Asian J. 2015, 10, 2320 – 2326, and references therein.
dc.identifier.citedreference 
dc.identifier.citedreferenceV. Bandi, S. K. Das, S. G. Awuah, Y. You, F. D′Souza, J. Am. Chem. Soc. 2014, 136, 7571 – 7574;
dc.identifier.citedreferenceV. Bandi, H. B. Gobeze, F. D′Souza, Chem. Eur. J. 2015, 21, 11483 – 11494;
dc.identifier.citedreferenceS. Shao, H. B. Gobeze, P. A. Karr, F. D′Souza, Chem. Eur. J. 2015, 21, 16005 – 16016, and references therein.
dc.identifier.citedreference 
dc.identifier.citedreferenceI. Aviv-Harel, Z. Gross, Coord. Chem. Rev. 2011, 255, 717 – 736;
dc.identifier.citedreferenceL. Flamigni, D. T. Gryko, Chem. Soc. Rev. 2009, 38, 1635 – 1646.
dc.identifier.citedreference 
dc.identifier.citedreferenceI. Luobeznova, L. Simkhovich, I. Goldberg, Z. Gross, Eur. J. Inorg. Chem. 2004, 1724 – 1732;
dc.identifier.citedreferenceZ. Ou, J. Shao, H. Zhao, K. Ohkubo, I. H. Wasbotten, S. Fukuzumi, A. Ghosh, K. M. Kadish, J. Porphyrins Phthalocyanines 2004, 8, 1236 – 1247; see also ref. [18]
dc.identifier.citedreference 
dc.identifier.citedreferenceQ. Xie, E. Perez-Cordero, L. Echegoyen, J. Am. Chem. Soc. 1992, 114, 3978 – 3980;
dc.identifier.citedreferenceL. Sánchez, N. Martín, D. M. Guldi, Angew. Chem. Int. Ed. 2005, 44, 5374 – 5382; Angew. Chem. 2005, 117, 5508 – 5516;
dc.identifier.citedreferenceD. I. Schuster, K. Li, D. M. Guldi, C. R. Chemie 2006, 9, 892 – 908;
dc.identifier.citedreferenceF. D′Souza, O. Ito, Sci. Prog. 2013, 96, 369 – 397; see also ref. [2h].
dc.identifier.citedreference 
dc.identifier.citedreferenceF. D′Souza, J. Am. Chem. Soc. 1996, 118, 923 – 924;
dc.identifier.citedreferenceJ. Dalton, L. R. Milgrom, J. Chem. Soc. Chem. Commun. 1979, 609 – 610;
dc.identifier.citedreferenceF. D′Souza, N. K. Subbaiyan, Y. Xie, J. P. Hill, K. Ariga, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 2009, 131, 16138 – 16146;
dc.identifier.citedreferenceY. Xie, J. P. Hill, A. L. Schumacher, A. S. D. Sandanayaka, Y. Araki, P. A. Karr, J. Labuta, F. D′Souza, O. Ito, C. E. Anson, A. K. Powell, K. Ariga, J. Phys. Chem. C 2008, 112, 10559 – 10579;
dc.identifier.citedreferenceA. L. Schumacher, A. S. D. Sandanayaka, J. P. Hill, K. Ariga, P. A. Karr, Y. Araki, O. Ito, F. D′Souza, Chem. Eur. J. 2007, 13, 4628 – 4635.
dc.identifier.citedreferenceR. Paolesse, R. K. Pandey, T. P. Forsyth, L. Jaquinod, K. R. Gerzevske, D. J. Nurco, M. O. Senge, S. Licoccia, T. Boschi, K. M. Smith, J. Am. Chem. Soc. 1996, 118, 3869 – 3882.
dc.identifier.citedreferenceR. Paolesse, F. Sagone, A. Macagnano, T. Boschi, L. Prodi, M. Montalti, N. Zaccheroni, F. Bolletta, K. M. Smith, J. Porphyrins Phthalocyanines 1999, 3, 364 – 370.
dc.identifier.citedreferenceC. Chen, Y.-Z. Zhu, Q.-J. Fan, H.-B. Song, J.-Y. Zheng, Chem. Lett. 2013, 41, 936 – 938.
dc.identifier.citedreferenceK. M. Kadish, Z. Ou, J. Shao, C. P. Gros, J. M. Barbe, F. Jerome, F. Bolze, F. Burdet, R. Guilard, Inorg. Chem. 2002, 41, 3990 – 4005.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.