Show simple item record

MAP Kinase‐Dependent RUNX2 Phosphorylation Is Necessary for Epigenetic Modification of Chromatin During Osteoblast Differentiation

dc.contributor.authorLi, Yan
dc.contributor.authorGe, Chunxi
dc.contributor.authorFranceschi, Renny T.
dc.date.accessioned2017-06-16T20:07:30Z
dc.date.available2018-11-01T16:42:01Zen
dc.date.issued2017-09
dc.identifier.citationLi, Yan; Ge, Chunxi; Franceschi, Renny T. (2017). "MAP Kinase‐Dependent RUNX2 Phosphorylation Is Necessary for Epigenetic Modification of Chromatin During Osteoblast Differentiation." Journal of Cellular Physiology 232(9): 2427-2435.
dc.identifier.issn0021-9541
dc.identifier.issn1097-4652
dc.identifier.urihttps://hdl.handle.net/2027.42/137207
dc.publisherWiley Periodicals, Inc.
dc.titleMAP Kinase‐Dependent RUNX2 Phosphorylation Is Necessary for Epigenetic Modification of Chromatin During Osteoblast Differentiation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137207/1/jcp25517.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137207/2/jcp25517_am.pdf
dc.identifier.doi10.1002/jcp.25517
dc.identifier.sourceJournal of Cellular Physiology
dc.identifier.citedreferenceWu H, Whitfield TW, Gordon JA, Dobson JR, Tai PW, van Wijnen AJ, Stein JL, Stein GS, Lian JB. 2014. Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis. Genome Biol 15: R52.
dc.identifier.citedreferenceLi Y, Ge C, Franceschi RT. 2010. Differentiation‐dependent association of phosphorylated extracellular signal‐regulated kinase with the chromatin of osteoblast‐related genes. J Bone Miner Res 25: 154 – 163.
dc.identifier.citedreferenceLi Y, Ge C, Long JP, Begun DL, Rodriguez JA, Goldstein SA, Franceschi RT. 2012. Biomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor. J Bone Miner Res 27: 1263 – 1274.
dc.identifier.citedreferenceMatsushita T, Chan YY, Kawanami A, Balmes G, Landreth GE, Murakami S. 2009. Extracellular signal‐regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol Cell Biol 29: 5843 – 5857.
dc.identifier.citedreferenceMcGee‐Lawrence ME, Westendorf JJ. 2011. Histone deacetylases in skeletal development and bone mass maintenance. Gene 474: 1 – 11.
dc.identifier.citedreferenceMeyer MB, Benkusky NA, Lee CH, Pike JW. 2014a. Genomic determinants of gene regulation by 1,25‐dihydroxyvitamin D3 during osteoblast‐lineage cell differentiation. J Biol Chem 289: 19539 – 19554.
dc.identifier.citedreferenceMeyer MB, Benkusky NA, Pike JW. 2014b. The RUNX2 cistrome in osteoblasts: Characterization, down‐regulation following differentiation, and relationship to gene expression. J Biol Chem 289: 16016 – 16031.
dc.identifier.citedreferenceRoca H, Phimphilai M, Gopalakrishnan R, Xiao G, Franceschi RT. 2005. Cooperative interactions between RUNX2 and homeodomain protein‐binding sites are critical for the osteoblast‐specific expression of the bone sialoprotein gene. J Biol Chem 280: 30845 – 30855.
dc.identifier.citedreferenceSierra J, Villagra A, Paredes R, Cruzat F, Gutierrez S, Javed A, Arriagada G, Olate J, Imschenetzky M, Van Wijnen AJ, Lian JB, Stein GS, Stein JL, Montecino M. 2003. Regulation of the bone‐specific osteocalcin gene by p300 requires Runx2/Cbfa1 and the vitamin D3 receptor but not p300 intrinsic histone acetyltransferase activity. Mol Cell Biol 23: 3339 – 3351.
dc.identifier.citedreferenceVerdone L, Caserta M, Di Mauro E. 2005. Role of histone acetylation in the control of gene expression. Biochem Cell Biol 83: 344 – 353.
dc.identifier.citedreferenceWang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K. 2008. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40: 897 – 903.
dc.identifier.citedreferenceXiao G, Gopalakrishnan R, Jiang D, Reith E, Benson MD, Franceschi RT. 2002a. Bone morphogenetic proteins, extracellular matrix, and mitogen‐activated protein kinase signaling pathways are required for osteoblast‐specific gene expression and differentiation in MC3T3‐E1 cells. J Bone Miner Res 17: 101 – 110.
dc.identifier.citedreferenceXiao G, Jiang D, Gopalakrishnan R, Franceschi RT. 2002b. Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor. Cbfa1/Runx2. J Biol Chem 277: 36181 – 36187.
dc.identifier.citedreferenceXiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G, Franceschi RT. 2000. MAPK pathways activate and phosphorylate the osteoblast‐specific transcription factor. Cbfa1. J Biol Chem 275: 4453 – 4459.
dc.identifier.citedreferenceYasui T, Hirose J, Tsutsumi S, Nakamura K, Aburatani H, Tanaka S. 2011. Epigenetic regulation of osteoclast differentiation: Possible involvement of Jmjd3 in the histone demethylation of Nfatc1. J Bone Miner Res 26: 2665 – 2671.
dc.identifier.citedreferenceYe L, Fan Z, Yu B, Chang J, Al Hezaimi K, Zhou X, Park NH, Wang CY. 2012. Histone demethylases KDM4 B and KDM6 B promotes osteogenic differentiation of human MSCs. Cell Stem Cell 11: 50 – 61.
dc.identifier.citedreferenceYou J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR. 2001. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen‐activated protein kinase in MC3T3‐E1 osteoblasts. J Biol Chem 276: 13365 – 13371.
dc.identifier.citedreferenceAfzal F, Pratap J, Ito K, Ito Y, Stein JL, van Wijnen AJ, Stein GS, Lian JB, Javed A. 2005. Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. J Cell Physiol 204: 63 – 72.
dc.identifier.citedreferenceBoumah CE, Lee M, Selvamurugan N, Shimizu E, Partridge NC. 2009. Runx2 recruits p300 to mediate parathyroid hormone’s effects on histone acetylation and transcriptional activation of the matrix metalloproteinase‐13 gene. Mol Endocrinol 23: 1255 – 1263.
dc.identifier.citedreferenceCloos PA, Christensen J, Agger K, Helin K. 2008. Erasing the methyl mark: Histone demethylases at the center of cellular differentiation and disease. Genes Dev 22: 1115 – 1140.
dc.identifier.citedreferenceDucy P, Karsenty G. 1995. Two distinct osteoblast‐specific cis‐acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 15: 1858 – 1869.
dc.identifier.citedreferenceEslaminejad MB, Fani N, Shahhoseini M. 2013. Epigenetic regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in culture. Cell J 15: 1 – 10.
dc.identifier.citedreferenceGe C, Cawthorn WP, Li Y, Zhao G, MacDougald OA, Franceschi RT. 2016. Reciprocal control of osteogenic and adipogenic differentiation by ERK/MAP kinase phosphorylation of runx2 and PPARgamma transcription factors. J Cell Physiol 231: 587 – 596.
dc.identifier.citedreferenceGe C, Xiao G, Jiang D, Franceschi RT. 2007. Critical role of the extracellular signal‐regulated kinase‐MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176: 709 – 718.
dc.identifier.citedreferenceGe C, Xiao G, Jiang D, Yang Q, Hatch NE, Roca H, Franceschi RT. 2009. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem 284: 32533 – 32543.
dc.identifier.citedreferenceGe C, Yang Q, Zhao G, Yu H, Kirkwood KL, Franceschi RT. 2012. Interactions between extracellular signal‐regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J Bone Miner Res 27: 538 – 551.
dc.identifier.citedreferenceGreenblatt MB, Shim JH, Glimcher LH. 2013. Mitogen‐activated protein kinase pathways in osteoblasts. Annu Rev Cell Dev Biol 29: 2.1 – 2.17.
dc.identifier.citedreferenceGreenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH. 2010. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 120: 2457 – 2473.
dc.identifier.citedreferenceGrewal SI, Moazed D. 2003. Heterochromatin and epigenetic control of gene expression. Science 301: 798 – 802.
dc.identifier.citedreferenceJensen ED, Schroeder TM, Bailey J, Gopalakrishnan R, Westendorf JJ. 2008. Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation‐independent manner. J Bone Miner Res 23: 361 – 372.
dc.identifier.citedreferenceKapur S, Mohan S, Baylink DJ, Lau KH. 2005. Fluid shear stress synergizes with insulin‐like growth factor‐I (IGF‐I) on osteoblast proliferation through integrin‐dependent activation of IGF‐I mitogenic signaling pathway. J Biol Chem 280: 20163 – 20170.
dc.identifier.citedreferenceKatz TA, Vasilatos SN, Harrington E, Oesterreich S, Davidson NE, Huang Y. 2014. Inhibition of histone demethylase, LSD2 (KDM1B), attenuates DNA methylation and increases sensitivity to DNMT inhibitor‐induced apoptosis in breast cancer cells. Breast Cancer Res Treat 146: 99 – 108.
dc.identifier.citedreferenceKhatiwala CB, Kim PD, Peyton SR, Putnam AJ. 2009. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J Bone Miner Res 24: 886 – 898.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.