Show simple item record

An Experimental and Theoretical Investigation on Pentacoordinated Cobalt(III) Complexes with an Intermediate S=1 Spin State: How Halide Ligands Affect their Magnetic Anisotropy

dc.contributor.authorBrazzolotto, Deborah
dc.contributor.authorGennari, Marcello
dc.contributor.authorYu, Shengying
dc.contributor.authorPécaut, Jacques
dc.contributor.authorRouzières, Mathieu
dc.contributor.authorClérac, Rodolphe
dc.contributor.authorOrio, Maylis
dc.contributor.authorDuboc, Carole
dc.date.accessioned2017-06-16T20:07:32Z
dc.date.available2017-06-16T20:07:32Z
dc.date.issued2016-01
dc.identifier.citationBrazzolotto, Deborah; Gennari, Marcello; Yu, Shengying; Pécaut, Jacques ; Rouzières, Mathieu ; Clérac, Rodolphe ; Orio, Maylis; Duboc, Carole (2016). "An Experimental and Theoretical Investigation on Pentacoordinated Cobalt(III) Complexes with an Intermediate S=1 Spin State: How Halide Ligands Affect their Magnetic Anisotropy." Chemistry – A European Journal 22(3): 925-933.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/137208
dc.description.abstractUnderstanding the factors that control the magnitude and symmetry of magnetic anisotropy should facilitate the rational design of mononuclear metal complexes in the quest for single‐molecule magnets (SMMs), based on a single metal ion, with high blocking temperatures and large energy barriers. The best strategy is to define magnetostructural correlations through the investigation of a series of metal complexes. It has been demonstrated that the main contribution to the magnetic anisotropy arises from the spin‐orbit coupling (SOC) effect in metal‐ion‐based systems, so current studies focus particularly on the use of both ligands and metal ions possessing a large SOC. In this context, we report a unique series of halide CoIII complexes, [CoL(X)], with X=Cl, Br, I (CoX) and L=2,2′‐(2,2′‐bipyridine‐6,6′‐diyl)bis(1,1‐diphenylethanethiolate), which possess a rare intermediate S=1 spin ground state. The S=1 CoIII complexes are attractive species because they possess a remarkably large axial zero‐field splitting (defined by D from the following Hamiltonian: H=DSz2), as well as the halide ligands inducing large SOC constants. The single‐crystal X‐ray structures reveal that the CoBr and CoI complexes are isostructural with the previously described CoCl complex. Their coordination sphere displays a distorted pentacoordinated square pyramidal geometry, with the halide located in the CoIII axial position. Large positive D values of 35, 26, and 18 cm−1 are found for CoCl, CoBr, and CoI, respectively, through analysis of the magnetic susceptibility data as a function of temperature. To rationalize this trend, theoretical calculations based on both density functional theory (DFT) and complete active space self‐consistent field (CASSCF) methods are performed successfully. Both the sign and magnitude of D are predicted remarkably well by these theoretical approaches. The DFT calculations also show that the resulting D values originate from a balance of several contributions, and that many factors, including differences in their structural properties and in the contribution of the halide, should be taken into account to explain the trend of D in this series of complexes.Complex magnetism: The factors that control the magnitude and symmetry of the magnetic anisotropy are investigated for a unique series of halide CoIII complexes (see figure), which possess a rare intermediate S=1 spin ground state and remarkably large axial zero‐field splitting.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetic anisotropy
dc.subject.othersingle-molecule magnets
dc.subject.otherhalides
dc.subject.othermagnetic properties
dc.subject.otherquantum chemistry
dc.titleAn Experimental and Theoretical Investigation on Pentacoordinated Cobalt(III) Complexes with an Intermediate S=1 Spin State: How Halide Ligands Affect their Magnetic Anisotropy
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137208/1/chem201502997.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137208/2/chem201502997-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/chem.201502997
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceF. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73 – 78.
dc.identifier.citedreferenceF. Neese, J. Comput. Chem. 2003, 24, 1740 – 1747.
dc.identifier.citedreferenceF. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057 – 1065.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. D. Becke, J. Chem. Phys. 1993, 98, 1372 – 1377;
dc.identifier.citedreferenceC. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785 – 789.
dc.identifier.citedreferenceC. van Wüllen, J. Chem. Phys. 1998, 109, 392 – 399.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. A. Pantazis, X. Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 2008, 4, 908 – 919;
dc.identifier.citedreferenceD. A. Pantazis, F. Neese, J. Chem. Theory Comput. 2009, 5, 2229 – 2238.
dc.identifier.citedreferenceF. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297 – 3305.
dc.identifier.citedreferenceA. Klamt, G. Schürmann, J. Chem. Soc. Perkin Trans. 2 1993, 799 – 805.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. E. Casida in Recent Advances in Density Functional Theory, Part I (Ed.: D. P. Chong), World Scientific, Singapore, 1995;
dc.identifier.citedreferenceR. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218 – 8224;
dc.identifier.citedreferenceR. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454 – 464.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Hirata, M. Head-Gordon, Chem. Phys. Lett. 1999, 314, 291 – 299;
dc.identifier.citedreferenceS. Hirata, M. Head-Gordon, Chem. Phys. Lett. 1999, 302, 375 – 382.
dc.identifier.citedreferenceF. Neese, J. Chem. Phys. 2001, 115, 11080 – 11080.
dc.identifier.citedreferenceChemcraft, http://chemcraftprog.com.
dc.identifier.citedreferenceR. McWeeny, Y. Mizuno, Proc. R. Soc. London Ser. A 1961, 259, 554 – 577.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Sinnecker, F. Neese, J. Phys. Chem. A 2006, 110, 12267 – 12275;
dc.identifier.citedreferenceF. Neese, J. Chem. Phys. 2007, 127, 164112.
dc.identifier.citedreferenceD. Ganyushin, F. Neese, J. Chem. Phys. 2006, 125, 024103.
dc.identifier.citedreferenceF. Neese in Calculation of EPR and NMR Parameters Theory and Applications (Eds.: M. Kaupp, M. Bühl, V. G. Malkin), Wiley-VCH, Weinheim, 2004.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. K. Singh, T. Gupta, P. Badkur, G. Rajaraman, Chem. Eur. J. 2014, 20, 10305 – 10313;
dc.identifier.citedreference 
dc.identifier.citedreferenceR. J. Blagg, C. A. Muryn, E. J. L. McInnes, F. Tuna, R. E. P. Winpenny, Angew. Chem. Int. Ed. 2011, 50, 6530 – 6533; Angew. Chem. 2011, 123, 6660 – 6663;
dc.identifier.citedreferenceK. R. Meihaus, J. R. Long, J. Am. Chem. Soc. 2013, 135, 17952 – 17957;
dc.identifier.citedreferenceL. Ungur, J. J. Le Roy, I. Korobkov, M. Murugesu, L. F. Chibotaru, Angew. Chem. Int. Ed. 2014, 53, 4413 – 4417; Angew. Chem. 2014, 126, 4502 – 4506;
dc.identifier.citedreferenceJ. J. Le Roy, L. Ungur, I. Korobkov, L. F. Chibotaru, M. Murugesu, J. Am. Chem. Soc. 2014, 136, 8003 – 8010.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. A. Craig, M. Murrie, Chem. Soc. Rev. 2015, 44, 2135 – 2147;
dc.identifier.citedreferenceM. Atanasov, D. Aravena, E. Suturina, E. Bill, D. Maganas, F. Neese, Coord. Chem. Rev. 2015, 289–290, 177 – 214;
dc.identifier.citedreferenceS. Gomez-Coca, D. Aravena, R. Morales, E. Ruiz, Coord. Chem. Rev. 2015, 289, 379 – 392.
dc.identifier.citedreference 
dc.identifier.citedreferenceK. S. Pedersen, M. Sigrist, M. A. Sorensen, A. L. Barra, T. Weyhermuller, S. Piligkos, C. A. Thuesen, M. G. Vinum, H. Mutka, H. Weihe, R. Clérac, J. Bendix, Angew. Chem. Int. Ed. 2014, 53, 1351 – 1354; Angew. Chem. 2014, 126, 1375 – 1378;
dc.identifier.citedreferenceJ. Martínez-Lillo, J. Faus, F. Lloret, M. Julve, Coord. Chem. Rev. 2015, 289–290, 215 – 237.
dc.identifier.citedreferenceM. Gruden-Pavlovic, M. Peric, M. Zlatar, P. Garcia-Fernandez, Chem. Sci. 2014, 5, 1453 – 1462.
dc.identifier.citedreferenceK. Marriott, L. Bhaskaran, C. Wilson, M. Medarde, S. T. Ochsenbein, S. Hill, M. Murrie, Chem. Sci. 2015, 6, 6823– 6828.
dc.identifier.citedreferenceJ. Vallejo, I. Castro, R. Ruiz-García, J. Cano, M. Julve, F. Lloret, G. De Munno, W. Wernsdorfer, E. Pardo, J. Am. Chem. Soc. 2012, 134, 15704 – 15707.
dc.identifier.citedreferenceJ. Krzystek, A. Ozarowski, J. Telser, Coord. Chem. Rev. 2006, 250, 2308 – 2324.
dc.identifier.citedreferenceR. Boca, Coord. Chem. Rev. 2004, 248, 757 – 815.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. Reviakine, A. V. Arbuznikov, J.-C. Tremblay, C. Remenyi, O. L. Malkina, V. G. Malkin, M. Kaupp, J. Chem. Phys. 2006, 125, 054110;
dc.identifier.citedreferenceS. Zein, C. Duboc, W. Lubitz, F. Neese, Inorg. Chem. 2008, 47, 134 – 142;
dc.identifier.citedreferenceC. Duboc, M. N. Collomb, F. Neese, Appl. Magn. Reson. 2010, 37, 229 – 245;
dc.identifier.citedreferenceC. Duboc, D. Ganyushin, K. Sivalingam, M.-N. Collomb, F. Neese, J. Phys. Chem. A 2010, 114, 10750 – 10758.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Ye, F. Neese, J. Chem. Theory Comput. 2012, 8, 2344 – 2351;
dc.identifier.citedreferenceJ. Krzystek, A. Ozarowski, S. A. Zvyagin, J. Telser, Inorg. Chem. 2012, 51, 4954 – 4964;
dc.identifier.citedreferenceS. Ye, F. Neese, A. Ozarowski, D. Smirnov, J. Krzystek, J. Telser, J.-H. Liao, C.-H. Hung, W.-C. Chu, Y.-F. Tsai, R.-C. Wang, K.-Y. Chen, H.-F. Hsu, Inorg. Chem. 2010, 49, 977 – 988;
dc.identifier.citedreferenceJ. Martinez-Lillo, T. F. Mastropietro, E. Lhotel, C. Paulsen, J. Cano, G. De Munno, J. Faus, F. Lloret, M. Julve, S. Nellutla, J. Krzystek, J. Am. Chem. Soc. 2013, 135, 13737 – 13748;
dc.identifier.citedreferenceA. Kubica, J. Kowalewski, D. Kruk, M. Odelius, J. Chem. Phys. 2013, 138, 0;
dc.identifier.citedreferenceR. Maurice, C. de Graaf, N. Guihery, Phys. Chem. Chem. Phys. 2013, 15, 18784 – 18804.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. Duboc, M. N. Collomb, J. Pécaut, A. Deronzier, F. Neese, Chem. Eur. J. 2008, 14, 6498 – 6509;
dc.identifier.citedreferenceC. Duboc, T. Phoeung, S. Zein, J. Pécaut, M. N. Collomb, F. Neese, Inorg. Chem. 2007, 46, 4905 – 4916.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Schweinfurth, J. Krzystek, I. Schapiro, S. Demeshko, J. Klein, J. Telser, A. Ozarowski, C.-Y. Su, F. Meyer, M. Atanasov, F. Neese, B. Sarkar, Inorg. Chem. 2013, 52, 6880 – 6892;
dc.identifier.citedreferenceP. J. Desrochers, J. Telser, S. A. Zvyagin, A. Ozarowski, J. Krzystek, D. A. Vicic, Inorg. Chem. 2006, 45, 8930 – 8941;
dc.identifier.citedreferenceR. Maurice, R. Bastardis, C. de Graaf, N. Suaud, T. Mallah, N. Guihery, J. Chem. Theory Comput. 2009, 5, 2977 – 2984.
dc.identifier.citedreferenceM. Atanasov, D. Ganyushin, D. A. Pantazis, K. Sivalingam, F. Neese, Inorg. Chem. 2011, 50, 7460 – 7477.
dc.identifier.citedreferenceS. Vaidya, A. Upadhyay, S. K. Singh, T. Gupta, S. Tewary, S. K. Langley, J. P. S. Walsh, K. S. Murray, G. Rajaraman, M. Shanmugam, Chem. Commun. 2015, 51, 3739 – 3742.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. I. Karunadasa, K. D. Arquero, L. A. Berben, J. R. Long, Inorg. Chem. 2010, 49, 4738 – 4740;
dc.identifier.citedreferenceC. Mantel, C. Baffert, I. Romero, A. Deronzier, J. Pécaut, M. N. Collomb, C. Duboc, Inorg. Chem. 2004, 43, 6455 – 6463;
dc.identifier.citedreferenceM. R. Saber, K. R. Dunbar, Chem. Commun. 2014, 50, 12266 – 12269;
dc.identifier.citedreferenceJ. Krzystek, S. A. Zvyagin, A. Ozarowski, A. T. Fiedler, T. C. Brunold, J. Telser, J. Am. Chem. Soc. 2004, 126, 2148 – 2155;
dc.identifier.citedreferenceF. Yang, Q. Zhou, Y. Zhang, G. Zeng, G. Li, Z. Shi, B. Wang, S. Feng, Chem. Commun. 2013, 49, 5289 – 5291;
dc.identifier.citedreferenceR. Boča, J. Miklovič, J. Titiš, Inorg. Chem. 2014, 53, 2367 – 2369.
dc.identifier.citedreferenceA. K. Bar, C. Pichon, J.-P. Sutter, Coord. Chem. Rev. 2015, DOI: 10.1016/j.ccr.2015.06.013.
dc.identifier.citedreferenceR. J. Deeth, D. L. Foulis, B. J. Williams-Hubbard, Dalton Trans. 2003, 3949 – 3955.
dc.identifier.citedreferenceJ. Kozhukh, M. A. Minier, S. J. Lippard, Inorg. Chem. 2015, 54, 418 – 424.
dc.identifier.citedreferenceE. R. King, G. T. Sazama, T. A. Betley, J. Am. Chem. Soc. 2012, 134, 17858 – 17861.
dc.identifier.citedreference 
dc.identifier.citedreferenceB. Ramdhanie, L. N. Zakharov, A. L. Rheingold, D. P. Goldberg, Inorg. Chem. 2002, 41, 4105 – 4107;
dc.identifier.citedreferenceS. Licoccia, R. Paolesse in Metal Complexes of Corroles and other Corrinoids, Vol. 84, Springer, Berlin, 1995, pp.  71 – 133.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. E. Harnung, E. Larsen, Inorg. Chem. 2007, 46, 5166 – 5173;
dc.identifier.citedreferenceJ. C. Brewer, T. J. Collins, M. R. Smith, B. D. Santarsiero, J. Am. Chem. Soc. 1988, 110, 423 – 428.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. A. García-Monforte, I. Ara, A. Martín, B. Menjón, M. Tomás, P. J. Alonso, A. B. Arauzo, J. I. Martínez, C. Rillo, Inorg. Chem. 2014, 53, 12384 – 12395;
dc.identifier.citedreferenceP. J. Van der Put, A. A. Schilperoord, Inorg. Chem. 1974, 13, 2476 – 2481;
dc.identifier.citedreferenceP. J. M. W. L. Birker, J. J. Bour, J. J. Steggerda, Inorg. Chem. 1973, 12, 1254 – 1259.
dc.identifier.citedreferenceC. H. Cho, T. Y. Chien, J. H. Chen, S. S. Wang, J. Y. Tung, Dalton Trans. 2010, 39, 2609 – 2614.
dc.identifier.citedreferenceM. Gennari, B. Gerey, N. Hall, J. Pécaut, M.-N. Collomb, M. Rouzières, R. Clérac, M. Orio, C. Duboc, Angew. Chem. Int. Ed. 2014, 53, 5318 – 5321; Angew. Chem. 2014, 126, 5422 – 5425.
dc.identifier.citedreferenceA. W. Addison, T. N. Rao, J. Reedijk, J. Vanrijn, G. C. Verschoor, J. Chem. Soc. Dalton Trans. 1984, 1349 – 1356.
dc.identifier.citedreferenceJ. C. Schöneboom, F. Neese, W. Thiel, J. Am. Chem. Soc. 2005, 127, 5840 – 5853.
dc.identifier.citedreferenceK. Ray, A. Begum, T. Weyhermuller, S. Piligkos, J. van Slageren, F. Neese, K. Wieghardt, J. Am. Chem. Soc. 2005, 127, 4403 – 4415.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Gennari, M. Orio, J. Pécaut, E. Bothe, F. Neese, M.-N. Collomb, C. Duboc, Inorg. Chem. 2011, 50, 3707 – 3716;
dc.identifier.citedreferenceM. Gennari, M. Orio, J. Pécaut, F. Neese, M.-N. Collomb, C. Duboc, Inorg. Chem. 2010, 49, 6399 – 6401.
dc.identifier.citedreferenceE. P. Broering, S. Dillon, E. M. Gale, R. A. Steiner, J. Telser, T. C. Brunold, T. C. Harrop, Inorg. Chem. 2015, 54, 3815 – 3828.
dc.identifier.citedreferenceS. Mossin, H. Weihe, A. L. Barra, J. Am. Chem. Soc. 2002, 124, 8764 – 8765.
dc.identifier.citedreferenceF. Neese, E. I. Solomon, Inorg. Chem. 1998, 37, 6568 – 6582.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. F. Evans, J. Chem. Soc. 1959, 2003 – 2005;
dc.identifier.citedreferenceS. K. Sur, J. Magn. Reson. 1989, 82, 169 – 173.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. P. Perdew, Phys. Rev. B 1986, 33, 8822 – 8824;
dc.identifier.citedreferenceJ. P. Perdew, Phys. Rev. B 1986, 34, 7406 – 7406;
dc.identifier.citedreferenceA. D. Becke, Phys. Rev. A 1988, 38, 3098 – 3100.
dc.identifier.citedreferenceA. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829 – 5835.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.