Show simple item record

Multimetalâ Substituted Epsilonâ Iron Oxide ϵâ Ga0.31Ti0.05Co0.05Fe1.59O3 for Nextâ Generation Magnetic Recording Tape in the Bigâ Data Era

dc.contributor.authorOhkoshi, Shin‐ichi
dc.contributor.authorNamai, Asuka
dc.contributor.authorYoshikiyo, Marie
dc.contributor.authorImoto, Kenta
dc.contributor.authorTamazaki, Kazunori
dc.contributor.authorMatsuno, Koji
dc.contributor.authorInoue, Osamu
dc.contributor.authorIde, Tsutomu
dc.contributor.authorMasada, Kenji
dc.contributor.authorGoto, Masahiro
dc.contributor.authorGoto, Takashi
dc.contributor.authorYoshida, Takayuki
dc.contributor.authorMiyazaki, Tatsuro
dc.date.accessioned2017-06-16T20:07:43Z
dc.date.available2017-11-01T15:31:30Zen
dc.date.issued2016-09-12
dc.identifier.citationOhkoshi, Shin‐ichi ; Namai, Asuka; Yoshikiyo, Marie; Imoto, Kenta; Tamazaki, Kazunori; Matsuno, Koji; Inoue, Osamu; Ide, Tsutomu; Masada, Kenji; Goto, Masahiro; Goto, Takashi; Yoshida, Takayuki; Miyazaki, Tatsuro (2016). "Multimetalâ Substituted Epsilonâ Iron Oxide ϵâ Ga0.31Ti0.05Co0.05Fe1.59O3 for Nextâ Generation Magnetic Recording Tape in the Bigâ Data Era." Angewandte Chemie International Edition 55(38): 11403-11406.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/137217
dc.description.abstractFrom the viewpoints of large capacity, longâ term guarantee, and low cost, interest in magnetic recording tapes has undergone a revival as an archive storage media for big data. Herein, we prepared a new series of metalâ substituted ϵâ Fe2O3, ϵâ GaIII0.31TiIV0.05CoII0.05FeIII1.59O3, nanoparticles with an average size of 18â nm. Ga, Ti, and Co cations tune the magnetic properties of ϵâ Fe2O3 to the specifications demanded for a magnetic recording tape. The coercive field was tuned to 2.7â kOe by introduction of singleâ ion anisotropy on CoII (S=3/2) along the câ axis. The saturation magnetization was increased by 44â % with GaIII (S=0) and TiIV (S=0) substitution through the enhancement of positive sublattice magnetizations. The magnetic tape media was fabricated using an actual production line and showed a very sharp signal response and a remarkably high signalâ toâ noise ratio compared to the currently used magnetic tape.For the record: A new series of metalâ substituted ϵâ Fe2O3 nanoparticles, ϵâ GaIII0.31TiIV0.05CoII0.05FeIII1.59O3, with an average size of 18â nm was prepared. The Ga, Ti, and Co cations tune the magnetic properties of ϵâ Fe2O3 to the specifications demanded for a magnetic recording tape. The fabricated magnetic tape showed a remarkably high signalâ toâ noise ratio. This series of materials should be applicable for data storage in the bigâ data era.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.othernanoparticles
dc.subject.otherepsilon-iron oxide
dc.subject.otherhard magnetic ferrite
dc.subject.otheriron
dc.subject.othermagnetic properties
dc.subject.othermagnetic recording tape
dc.titleMultimetalâ Substituted Epsilonâ Iron Oxide ϵâ Ga0.31Ti0.05Co0.05Fe1.59O3 for Nextâ Generation Magnetic Recording Tape in the Bigâ Data Era
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137217/1/anie201604647_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137217/2/anie201604647.pdf
dc.identifier.doi10.1002/anie.201604647
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceI. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu, D. Weller, Nature 2004, 428, 831.
dc.identifier.citedreferenceD. Alloyeau, C. Ricolleau, C. Mottet, T. Oikawa, C. Langlois, Y. Leâ Bouar, N. Braidy, A. Loiseau, Nat. Mater. 2009, 8, 940.
dc.identifier.citedreferenceG. Cherubini, C. C. Chung, W. C. Messner, S. O. R. Moheimani, IEEE Trans. Contr. Syst. Technol. 2012, 20, 296.
dc.identifier.citedreferenceH. Nishio, H. Yamamoto, IEEE Trans. Magn. 2010, 46, 3747.
dc.identifier.citedreferenceR. E. Fontana,â Jr., G. M. Decad, S. R. Hetzler, J. Appl. Phys. 2015, 117, 17E 301.
dc.identifier.citedreferenceJ. Jin, S. Ohkoshi, K. Hashimoto, Adv. Mater. 2004, 16, 48.
dc.identifier.citedreferenceE. Tronc, C. Chanéac, J. P. Jolivet, J. M. Grenèche, J. Appl. Phys. 2005, 98, 053901.
dc.identifier.citedreferenceP. Brázda, E. VeÄ erníkowá, E. Pližingrová, A. LanÄ ok, D. NižŠansky, J. Therm. Anal. Calorim. 2014, 117, 85.
dc.identifier.citedreferenceM. Gich, I. Fina, A. Morelli, F. Sánchez, M. Alexe, J. Gàzquez, J. Fontcuberta, A. Roig, Adv. Mater. 2014, 26, 4645.
dc.identifier.citedreferenceA. Namai, M. Yoshikiyo, K. Yamada, S. Sakurai, T. Goto, T. Yoshida, T. Miyazaki, M. Nakajima, T. Suemoto, H. Tokoro, S. Ohkoshi, Nat. Commun. 2012, 3, 1035.
dc.identifier.citedreferenceJ. TuÄ ek, R. ZboÅ il, A. Namai, S. Ohkoshi, Chem. Mater. 2010, 22, 6483.
dc.identifier.citedreferenceA. Namai, S. Sakurai, T. Suemoto, M. Nakajima, K. Matsumoto, M. Goto, S. Sasaki, S. Ohkoshi, J. Am. Chem. Soc. 2009, 131, 1170.
dc.identifier.citedreferenceY.-C. Tseng, N. M. Souza-Neto, D. Haskel, M. Gich, C. Fontera, A. Roig, M. vanâ Veenendaal, J. Nogués, etâ al., Phys. Rev. B 2009, 79, 094404.
dc.identifier.citedreferenceS. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, S. Sasaki, Angew. Chem. Int. Ed. 2007, 46, 8392; Angew. Chem. 2007, 119, 8544.
dc.identifier.citedreferenceM. L. Plumer, J. vanâ Ek, D. Weller, The Physics of Ultra-High Density Magnetic Recording, Springer, Berlin, 2001.
dc.identifier.citedreferenceW. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, Nat. Photonics 2009, 3, 220.
dc.identifier.citedreferenceT. Hayashi, S. Hirono, M. Tomita, S. Umemura, Nature 1996, 381, 772.
dc.identifier.citedreferenceA. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, O. A. Bayukov, O. N. Pletnev, S. S. Yakushkin, G. A. Bukhtiyarova, O. N. Martyanov, J. Appl. Phys. 2015, 118, 213901.
dc.identifier.citedreferenceJ. Kohout, P. Brázda, K. ZávÄ ta, D. Kubániová, T. KmjeÄ , L. KubÃ­Ä ková, M. Klementová, E. Å antavá, A. LanÄ ok, J. Appl. Phys. 2015, 117, 17D 505.
dc.identifier.citedreferenceD. A. Balaev, I. S. Poperechny, A. A. Krasikov, K. A. Shaikhutdinov, A. A. Dubrovskiy, S. I. Popkov, A. D. Balaev, S. S. Yakushkin, G. A. Bukhtiyarova, O. N. Martyanov, Yu. L. Raikher, J. Appl. Phys. 2015, 117, 063908.
dc.identifier.citedreferenceS. Ohkoshi, A. Namai, K. Imoto, M. Yoshikiyo, W. Tarora, K. Nakagawa, M. Komine, Y. Miyamoto, T. Nasu, S. Oka, H. Tokoro, Sci. Rep. 2015, 5, 14414.
dc.identifier.citedreferenceS. Ohkoshi, H. Tokoro, Bull. Chem. Soc. Jpn. 2013, 86, 897.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.