Show simple item record

Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate

dc.contributor.authorFukuzumi, Shunichi
dc.contributor.authorJung, Jieun
dc.contributor.authorYamada, Yusuke
dc.contributor.authorKojima, Takahiko
dc.contributor.authorNam, Wonwoo
dc.date.accessioned2017-06-16T20:07:57Z
dc.date.available2017-06-16T20:07:57Z
dc.date.issued2016-04-20
dc.identifier.citationFukuzumi, Shunichi; Jung, Jieun; Yamada, Yusuke; Kojima, Takahiko; Nam, Wonwoo (2016). "Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate." Chemistry – An Asian Journal 11(8): 1138-1150.
dc.identifier.issn1861-4728
dc.identifier.issn1861-471X
dc.identifier.urihttps://hdl.handle.net/2027.42/137224
dc.description.abstractPhotocatalytic water oxidation by persulfate (Na2S2O8) with [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine) as a photocatalyst provides a standard protocol to study the catalytic reactivity of water oxidation catalysts. The yield of evolved oxygen per persulfate is regarded as a good index for the catalytic reactivity because the oxidation of bpy of [Ru(bpy)3]2+ and organic ligands of catalysts competes with the catalytic water oxidation. A variety of metal complexes act as catalysts in the photocatalytic water oxidation by persulfate with [Ru(bpy)3]2+ as a photocatalyst. Herein, the catalytic mechanisms are discussed for homogeneous water oxidation catalysis. Some metal complexes are converted to metal oxide or hydroxide nanoparticles during the photocatalytic water oxidation by persulfate, acting as precursors for the actual catalysts. The catalytic reactivity of various metal oxides is compared based on the yield of evolved oxygen and turnover frequency. A heteropolynuclear cyanide complex is the best catalyst reported so far for the photocatalytic water oxidation by persulfate and [Ru(bpy)3]2+, affording 100 % yield of O2 per persulfate.Waterworld: Homogeneous and heterogeneous catalysis and mechanisms of photocatalytic oxidation of water by persulfate with [Ru(bpy)]32+ are compared and discussed including the conversion from homogeneous precatalysts to heterogeneous catalysts.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhomogeneous catalysis
dc.subject.otherheterogeneous catalysis
dc.subject.othernanoparticles
dc.subject.otherphotocatalysis
dc.subject.otherwater oxidation
dc.titleHomogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137224/1/asia201501329.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137224/2/asia201501329_am.pdf
dc.identifier.doi10.1002/asia.201501329
dc.identifier.sourceChemistry – An Asian Journal
dc.identifier.citedreferenceA. Savini, A. Bucci, G. Bellachioma, L. Rocchigiani, C. Zuccaccia, A. Llobet, A. Macchioni, Eur. J. Inorg. Chem. 2014, 690 – 697.
dc.identifier.citedreferenceA. Harriman, Eur. J. Inorg. Chem. 2014, 573 – 580.
dc.identifier.citedreferenceM. Hara, C. C. Waraksa, J. T. Lean, B. A. Lewis, T. E. Mallouk, J. Phys. Chem. A 2000, 104, 5275 – 5280.
dc.identifier.citedreferenceM. Hara, J. T. Lean, T. E. Mallouk, Chem. Mater. 2001, 13, 4668 – 4675.
dc.identifier.citedreferenceF. A. Frame, T. K. Townsend, R. L. Chamousis, E. M. Sabio, T. Dittrich, N. D. Browning, F. E. Osterloh, J. Am. Chem. Soc. 2011, 133, 7264 – 7267.
dc.identifier.citedreferenceA. Harriman, M.-C. Richoux, P. A. Christensen, S. Mosseri, P. Neta, J. Chem. Soc. Faraday Trans. 1 1987, 83, 3001 – 3014.
dc.identifier.citedreferenceY. Zhang, E. C. Judkins, D. R. McMillin, D. Mehta, T. Ren, ACS Catal. 2013, 3, 2474 – 2478.
dc.identifier.citedreferenceS. K. Das, P. K. Dutta, Microporous Mesoporous Mater. 1998, 22, 475 – 483.
dc.identifier.citedreferenceD. Hong, Y. Yamada, T. Nagatomi, Y. Takai, S. Fukuzumi, J. Am. Chem. Soc. 2012, 134, 19572 – 19575.
dc.identifier.citedreferenceX. Deng, H.-J. Bongard, C. K. Chan, H. Tüysüz, ChemSusChem 2015, in press, DOI: 10.1002/cssc.201500872.
dc.identifier.citedreferenceX. Du, Y. Ding, C. Li, ChemCatChem 2015, 7, 2370 – 2376.
dc.identifier.citedreferenceQ. Xiang, G. Chen, T.-C. Lau, RSC Adv. 2015, 5, 52210 – 52216.
dc.identifier.citedreferenceX. Du, Y. Ding, R. Xiang, X. Xiang, Phys. Chem. Chem. Phys. 2015, 17, 10648 – 10655.
dc.identifier.citedreferenceY. Yamada, K. Yano, D. Hong, S. Fukuzumi, Phys. Chem. Chem. Phys. 2012, 14, 5753 – 5760.
dc.identifier.citedreferenceD. Ressnig, M. Shalom, J. Patscheider, R. Moré, F. Evangelisti, M. Antoniettia, G. R. Patzke, J. Mater. Chem. A 2015, 3, 5072 – 5082.
dc.identifier.citedreferenceD. Hong, Y. Yamada, A. Nomura, S. Fukuzumi, Phys. Chem. Chem. Phys. 2013, 15, 19125 – 19128.
dc.identifier.citedreferenceD. M. Robinson, Y. B. Go, M. Mui, G. Gardner, Z. Zhang, D. Mastrogiovanni, E. Garfunkel, J. Li, M. Greenblatt, G. C. Dismukes, J. Am. Chem. Soc. 2013, 135, 3494 – 3501.
dc.identifier.citedreferenceT. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982 – 5993.
dc.identifier.citedreferenceS. Pintado, S. Goberna-Ferron, E. C. Escudero-Adan, J. R. Galan-Mascarós, J. Am. Chem. Soc. 2013, 135, 13270 – 13273.
dc.identifier.citedreferenceX.-P. Shen, Y.-Z. Li, Y. Song, Z. Xu, G.-C. Guo, Eur. J. Inorg. Chem. 2007, 1698 – 1702.
dc.identifier.citedreferenceY. Yamada, K. Oyama, R. Gates, S. Fukuzumi, Angew. Chem. Int. Ed. 2015, 54, 5613 – 5617; Angew. Chem. 2015, 127, 5705 – 5709.
dc.identifier.citedreferenceR. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751 – 767.
dc.identifier.citedreferenceE. W. McFarland, Energy Environ. Sci. 2014, 7, 846 – 854.
dc.identifier.citedreferenceT. A. Faunce, W. Lubitz, A. W. (Bill) Rutherford, D. MacFarlane, G. F. Moore, P. Yang, D. G. Nocera, T. A. Moore, D. H. Gregory, S. Fukuzumi, K. B. Yoon, F. A. Armstrong, M. R. Wasielewski, S. Styring, Energy Environ. Sci. 2013, 6, 695 – 698.
dc.identifier.citedreferenceN. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729 – 15735.
dc.identifier.citedreferenceD. Kim, K. K. Sakimoto, D. Hong, P. Yang, Angew. Chem. Int. Ed. 2015, 54, 3259 – 3266; Angew. Chem. 2015, 127, 3309 – 3316.
dc.identifier.citedreferenceS. Fukuzumi, K. Ohkubo, T. Suenobu, Acc. Chem. Res. 2014, 47, 1455 – 1464.
dc.identifier.citedreferenceS. Fukuzumi, K. Ohkubo, J. Mater. Chem. 2012, 22, 4575 – 4587.
dc.identifier.citedreferenceD. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2009, 42, 1890 – 1898.
dc.identifier.citedreferenceS. Fukuzumi, Phys. Chem. Chem. Phys. 2008, 10, 2283 – 2297.
dc.identifier.citedreferenceM. R. Wasielewski, Acc. Chem. Res. 2009, 42, 1910 – 1921.
dc.identifier.citedreferenceS. Fukuzumi, T. Kojima, J. Mater. Chem. 2008, 18, 1427 – 1439.
dc.identifier.citedreferenceG. Knör, Coord. Chem. Rev. 2015, 304–305, 102 – 108.
dc.identifier.citedreferenceS. Fukuzumi, Curr. Opin. Chem. Biol. 2015, 25, 18 – 26.
dc.identifier.citedreferenceS. Berardi, S. Drouet, L. Francàs, C. Gimbert-Suriñach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501 – 7519.
dc.identifier.citedreferenceS. Fukuzumi, Biochim. Biophys. Acta 2015, in press, DOI: 10.1016/j.bbabio.2015.08.012.
dc.identifier.citedreferenceJ. R. McKone, N. S. Lewis, H. B. Gray, Chem. Mater. 2014, 26, 407 – 414.
dc.identifier.citedreferenceS. Fukuzumi, Y. Yamada, Aust. J. Chem. 2014, 67, 354 – 364.
dc.identifier.citedreferenceJ. Ran, J. Zhang, J. Yu, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2014, 43, 7787 – 7812.
dc.identifier.citedreferenceS. Fukuzumi, Y. Yamada, ChemSusChem 2013, 6, 1834 – 1847.
dc.identifier.citedreferenceS. Fukuzumi, K. Ohkubo, Dalton Trans. 2013, 42, 15846 – 15858.
dc.identifier.citedreferenceT. Grewe, M. Meggouh, H. Tueysuez, Chem. Asian J. 2016, 11, 22 – 42.
dc.identifier.citedreferenceS. Fukuzumi, Eur. J. Inorg. Chem. 2008, 1351 – 1362.
dc.identifier.citedreferenceX. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148 – 5180.
dc.identifier.citedreferenceS. Fukuzumi, Bull. Chem. Soc. Jpn. 2006, 79, 177 – 195.
dc.identifier.citedreferenceM. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. Yamamoto, H. Ago, J.-R. Shen, Nature 2015, 517, 99 – 103.
dc.identifier.citedreferenceY. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature 2011, 473, 55 – 60.
dc.identifier.citedreferenceJ. Yano, V. Yachandra, Chem. Rev. 2014, 114, 4175 – 4205.
dc.identifier.citedreferenceN. Cox, D. A. Pantazis, F. Neese, W. Lubitz, Acc. Chem. Res. 2013, 46, 1588 – 1596.
dc.identifier.citedreferenceM. D. Kärkäs, O. Verho, E. V. Johnston, B. Åkermark, Chem. Rev. 2014, 114, 11863 – 12001.
dc.identifier.citedreferenceL. Duan, L. Wang, F. Li, F. Li, L. Sun, Acc. Chem. Res. 2015, 48, 2084 – 2096.
dc.identifier.citedreferenceM. M. Najafpour, M. Z. Ghobadi, B. Haghighi, T. Tomo, J.-R. Shen, S. I. Allakhverdiev, Biochim. Biophys. Acta Bioenerg. 2015, 1847, 294 – 306.
dc.identifier.citedreferenceA. R. Parent, R. H. Crabtree, G. W. Brudvig, Chem. Soc. Rev. 2013, 42, 2247 – 2252.
dc.identifier.citedreferenceK. J. Young, B. J. Brennan, R. Tagore, G. W. Brudvig, Acc. Chem. Res. 2015, 48, 567 – 574.
dc.identifier.citedreferenceK. J. Young, L. A. Martini, R. L. Milot, R. C. Snoeberger,  III, V. S. Batista, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, Coord. Chem. Rev. 2012, 256, 2503 – 2520.
dc.identifier.citedreferenceS. Fukuzumi, D. Hong, Y. Yamada, J. Phys. Chem. Lett. 2013, 4, 3458 – 3467.
dc.identifier.citedreferenceX. Wu, F. Li, B. Zhang, L. Sun, J. Photochem. Photobiol. C 2015, 25, 71 – 89.
dc.identifier.citedreferenceS. Fukuzumi, Y. Yamada, J. Mater. Chem. 2012, 22, 24284 – 24296.
dc.identifier.citedreferenceD. G. H. Hetterscheid, J. N. H. Reek, Angew. Chem. Int. Ed. 2012, 51, 9740 – 9747; Angew. Chem. 2012, 124, 9878 – 9885.
dc.identifier.citedreferenceD. J. Wasylenko, R. D. Palmer, C. P. Berlinguette, Chem. Commun. 2013, 49, 218 – 227.
dc.identifier.citedreferenceA. Sartorel, M. Bonchio, S. Campagna, F. Scandola, Chem. Soc. Rev. 2013, 42, 2262 – 2280.
dc.identifier.citedreferenceA. Lewandowska-Andralojc, D. E. Polyansky, J. Phys. Chem. A 2013, 117, 10311 – 10319.
dc.identifier.citedreferenceX. Du, Y. Ding, F. Song, B. Ma, J. Zhao, J. Song, Chem. Commun. 2015, 51, 13925 – 13928.
dc.identifier.citedreferenceF. Evangelisti, R. Moré, F. Hodel, S. Luber, G. R. Patzke, J. Am. Chem. Soc. 2015, 137, 11076 – 11084.
dc.identifier.citedreferenceF. Evangelisti, R. Güttinger, R. Moré, S. Luber, G. R. Patzke, J. Am. Chem. Soc. 2013, 135, 18734 – 18737.
dc.identifier.citedreferenceJ. Wei, Y. Feng, P. Zhou, Y. Liu, J. Xu, R. Xiang, Y. Ding, C. Zhao, L. Fan, C. Hu, ChemSusChem 2015, 8, 2630 – 2634.
dc.identifier.citedreferenceY. V. Geletii, Z. Huang, Y. Hou, D. G. Musaev, T. Lian, C. L. Hill, J. Am. Chem. Soc. 2009, 131, 7522 – 7523.
dc.identifier.citedreferenceX.-B. Han, Y.-G. Li, Z.-M. Zhang, H.-Q. Tan, Y. Lu, E.-B. Wang, J. Am. Chem. Soc. 2015, 137, 5486 – 5493.
dc.identifier.citedreferenceY. Zhao, Y. Zhang, Y. Ding, M. Chen, Dalton Trans. 2015, 44, 15628 – 15635.
dc.identifier.citedreferenceX.-B. Han, Z.-M. Zhang, T. Zhang, Y.-G. Li, W. Lin, W. You, Z.-M. Su, E.-B. Wang, J. Am. Chem. Soc. 2014, 136, 5359 – 5366.
dc.identifier.citedreferenceH. Lv, J. Song, Y. V. Geletii, J. W. Vickers, J. M. Sumliner, D. G. Musaev, P. Kögerler, P. F. Zhuk, J. Bacsa, G. Zhu, C. L. Hill, J. Am. Chem. Soc. 2014, 136, 9268 – 9271.
dc.identifier.citedreferenceT. Zhou, D. Wang, S. C.-K. Goh, J. Hong, J. Han, J. Mao, R. Xu, Energy Environ. Sci. 2015, 8, 526 – 534.
dc.identifier.citedreferenceR. Al-Oweini, A. Sartorel, B. S. Bassil, M. Natali, S. Berardi, F. Scandola, U. Kortz, M. Bonchio, Angew. Chem. Int. Ed. 2014, 53, 11182 – 11185; Angew. Chem. 2014, 126, 11364 – 11367.
dc.identifier.citedreferenceR. Xiang, Y. Ding, J. Zhao, Chem. Asian J. 2014, 9, 3228 – 3237.
dc.identifier.citedreferenceC. Besson, Z. Huang, Y. V. Geletii, S. Lense, K. I. Hardcastle, D. G. Musaev, T. Lian, A. Proust, C. L. Hill, Chem. Commun. 2010, 46, 2784 – 2786.
dc.identifier.citedreferenceS. Tanaka, M. Annaka, K. Sakai, Chem. Commun. 2012, 48, 1653 – 1655.
dc.identifier.citedreferenceB. Das, A. Orthaber, S. Ott, A. Thapper, Chem. Commun. 2015, 51, 13074 – 13077.
dc.identifier.citedreferenceM. Chen, S.-M. Ng, S.-M. Yiu, K.-C. Lau, R. J. Zeng, T.-C. Lau, Chem. Commun. 2014, 50, 14956 – 14959.
dc.identifier.citedreferenceT. Nakazono, A. R. Parent, K. Sakai, Chem. Commun. 2013, 49, 6325 – 6327.
dc.identifier.citedreferenceT. Nakazono, A. R. Parent, K. Sakai, Chem. Eur. J. 2015, 21, 6723 – 6726.
dc.identifier.citedreferenceC.-F. Leung, S.-M. Ng, C.-C. Ko, W.-L. Man, J. Wu, L. Chen, T.-C. Lau, Energy Environ. Sci. 2012, 5, 7903 – 7907.
dc.identifier.citedreferenceH. Li, F. Li, B. Zhang, X. Zhou, F. Yu, L. Sun, J. Am. Chem. Soc. 2015, 137, 4332 – 4335.
dc.identifier.citedreferenceL. Wang, L. Duan, L. Tong, L. Sun, J. Catal. 2013, 306, 129 – 132.
dc.identifier.citedreferenceL. Wang, M. Mirmohades, A. Brown, L. Duan, F. Li, Q. Daniel, R. Lomoth, L. Sun, L. Hammarström, Inorg. Chem. 2015, 54, 2742 – 2751.
dc.identifier.citedreferenceA. Lewandowska-Andralojc, D. E. Polyansky, R. Zong, R. P. Thummel, E. Fujita, Phys. Chem. Chem. Phys. 2013, 15, 14058 – 14068.
dc.identifier.citedreferenceC. Panda, J. Debgupta, D. D. Díaz, K. K. Singh, S. S. Gupta, B. B. Dhar, J. Am. Chem. Soc. 2014, 136, 12273 – 12282.
dc.identifier.citedreferenceM.-P. Santoni, G. L. Ganga, V. M. Nardo, M. Natali, F. Puntoriero, F. Scandola, S. Campagna, J. Am. Chem. Soc. 2014, 136, 8189 – 8192.
dc.identifier.citedreferenceS. Berardi, L. Francàs, S. Neudeck, S. Maji, J. Benet-Buchholz, F. Meyer, A. Llobet, ChemSusChem 2015, 8, 3688 – 3696.
dc.identifier.citedreferenceT. Ishizuka, A. Watanabe, H. Kotani, K. Satonaka, D. Hong, T. Wada, Y. Shiota, K. Yoshizawa, K. Ohara, K. Yamaguchi, S. Kato, S. Fukuzumi, T. Kojima, Inorg. Chem. 2016, 55, 1154 – 1164.
dc.identifier.citedreferenceY. V. Geletii, B. Botar, P. Kögerler, D. A. Hillesheim, D. G. Musaev, C. L. Hill, Angew. Chem. Int. Ed. 2008, 47, 3896 – 3899; Angew. Chem. 2008, 120, 3960 – 3963.
dc.identifier.citedreferenceA. Sartorel, M. Carraro, G. Scorrano, R. D. Zorzi, S. Geremia, N. D. McDaniel, S. Bernhard, M. Bonchio, J. Am. Chem. Soc. 2008, 130, 5006 – 5007.
dc.identifier.citedreferenceQ. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill, Science 2010, 328, 342 – 345.
dc.identifier.citedreferenceS. Bang, Y.-M. Lee, S. Hong, K.-B. Cho, Y. Nishida, M. S. Seo, R. Sarangi, S. Fukuzumi, W. Nam, Nat. Chem. 2014, 6, 934 – 940.
dc.identifier.citedreferenceS. Fukuzumi, K. Ohkubo, Y.-M. Lee, W. Nam, Chem. Eur. J. 2015, 21, 17548 – 17559.
dc.identifier.citedreferenceM. Murakami, D. Hong, T. Suenobu, S. Fukuzumi, J. Am. Chem. Soc. 2011, 133, 11605 – 11613.
dc.identifier.citedreferenceD. K. Dogutan, R. McGuire,  Jr., D. G. Nocera, J. Am. Chem. Soc. 2011, 133, 9178 – 9180.
dc.identifier.citedreferenceD. J. Wasylenko, R. D. Palmer, E. Schott, C. P. Berlinguette, Chem. Commun. 2012, 48, 2107 – 2109.
dc.identifier.citedreferenceD. Wang, J. T. Groves, Proc. Natl. Acad. Sci. USA 2013, 110, 15579 – 15584.
dc.identifier.citedreferenceL. Wang, L. Duan, Y. Wang, M. S. G. Ahlquist, L. Sun, Chem. Commun. 2014, 50, 12947 – 12950.
dc.identifier.citedreferenceS. Neudeck, S. Maji, I. López, S. Meyer, F. Meyer, A. Llobet, J. Am. Chem. Soc. 2014, 136, 24 – 27.
dc.identifier.citedreferenceF. Bozoglian, S. Romain, M. Z. Ertem, T. K. Todorova, C. Sens, J. Mola, M. Rodríguez, I. Romero, J. Benet-Buchholz, X. Fontrodona, C. J. Cramer, L. Gagliardi, A. Llobet, J. Am. Chem. Soc. 2009, 131, 15176 – 15187.
dc.identifier.citedreferenceX. Sala, S. Maji, R. Bofill, J. García-Antón, L. Escriche, A. Llobet, Acc. Chem. Res. 2014, 47, 504 – 516.
dc.identifier.citedreferenceD. Hong, M. Murakami, Y. Yamada, S. Fukuzumi, Energy Environ. Sci. 2012, 5, 5708 – 5716.
dc.identifier.citedreferenceS. Fukuzumi, D. Hong, Eur. J. Inorg. Chem. 2014, 645 – 659.
dc.identifier.citedreferenceJ. J. Stracke, R. G. Finke, ACS Catal. 2014, 4, 909 – 933.
dc.identifier.citedreferenceM. A. Asraf, H. A. Younus, M. Yusubov, F. Verpoort, Catal. Sci. Technol. 2015, 5, 4901 – 4925.
dc.identifier.citedreferenceJ. J. Stracke, R. G. Finke, ACS Catal. 2014, 4, 79 – 89.
dc.identifier.citedreferenceJ. J. Stracke, R. G. Finke, ACS Catal. 2013, 3, 1209 – 1219.
dc.identifier.citedreferenceS. Goberna-Ferrón, J. Soriano-López, J. R. Galán-Mascarós, M. Nyman, Eur. J. Inorg. Chem. 2015, 2833 – 2840.
dc.identifier.citedreferenceS. Goberna-Ferrón, L. Vigara, J. Soriano-López, J. R. Galán-Mascarós, Inorg. Chem. 2012, 51, 11707 – 11715.
dc.identifier.citedreferenceJ. Soriano-López, S. Goberna-Ferrón, L. Vigara, J. J. Carbó, J. M. Poblet, J. R. Galán-Mascarós, Inorg. Chem. 2013, 52, 4753 – 4755.
dc.identifier.citedreferenceJ. W. Vickers, H. Lv, J. M. Sumliner, G. Zhu, Z. Luo, D. G. Musaev, Y. V. Geletii, C. L. Hill, J. Am. Chem. Soc. 2013, 135, 14110 – 14118.
dc.identifier.citedreferenceY.-H. Lai, C.-Y. Lin, Y. Lv, T. C. King, A. Steiner, N. M. Muresan, L. Gan, D. S. Wright, E. Reisner, Chem. Commun. 2013, 49, 4331 – 4333.
dc.identifier.citedreferenceM. M. Najafpour, F. Ebrahimi, R. Safdari, M. Z. Ghobadi, M. Tavahodi, P. Rafighi, Dalton Trans. 2015, 44, 15435 – 15440.
dc.identifier.citedreferenceJ. M. Thomsen, D. L. Huang, R. H. Crabtree, G. W. Brudvig, Dalton Trans. 2015, 44, 12452 – 12472.
dc.identifier.citedreferenceD. Hong, J. Jung, J. Park, Y. Yamada, T. Suenobu, Y.-M. Lee, W. Nam, S. Fukuzumi, Energy Environ. Sci. 2012, 5, 7606 – 7616.
dc.identifier.citedreferenceS. Fu, Y, Liu, Y. Ding, X. Du, F. Song, R. Xiang, B. Ma, Chem. Commun. 2014, 50, 2167 – 2169.
dc.identifier.citedreferenceH. Chen, Z. Sun, X. Liu, A. Han, P. Du, J. Phys. Chem. C 2015, 119, 8998 – 9004.
dc.identifier.citedreferenceG. Chen, L. Chen, S.-M. Ng, W.-L. Man, T.-C. Lau, Angew. Chem. Int. Ed. 2013, 52, 1789 – 1791; Angew. Chem. 2013, 125, 1833 – 1835.
dc.identifier.citedreferenceD. Hong, S. Mandal, Y. Yamada, Y.-M. Lee, W. Nam, A. Llobet, S. Fukuzumi, Inorg. Chem. 2013, 52, 9522 – 9531.
dc.identifier.citedreferenceH. Liu, M. Schilling, M. Yulikov, S. Luber, G. R. Patzke, ACS Catal. 2015, 5, 4994 – 4999.
dc.identifier.citedreferenceG. Chen, L. Chen, S.-M. Ng, T.-C. Lau, ChemSusChem 2014, 7, 127 – 134.
dc.identifier.citedreferenceA. Singh, S. L. Y. Chang, R. K. Hocking, U. Bach, L. Spiccia, Energy Environ. Sci. 2013, 6, 579 – 586.
dc.identifier.citedreferenceY. Isaka, S. Kato, D. Hong, T. Suenobu, Y. Yamada, S. Fukuzumi, J. Mater. Chem. A 2015, 3, 12404 – 12412.
dc.identifier.citedreferenceS. Kato, J. Jung, T. Suenobu, S. Fukuzumi, Energy Environ. Sci. 2013, 6, 3756 – 3764.
dc.identifier.citedreferenceA. Harriman, I. J. Pickering, J. M. Thomas, J. Chem. Soc. Faraday Trans. 1 1988, 84, 2795 – 2806.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.