Show simple item record

Alterations in cellular metabolome after pharmacological inhibition of Notch in glioblastoma cells

dc.contributor.authorKahlert, Ulf D.
dc.contributor.authorCheng, Menglin
dc.contributor.authorKoch, Katharina
dc.contributor.authorMarchionni, Luigi
dc.contributor.authorFan, Xing
dc.contributor.authorRaabe, Eric H.
dc.contributor.authorMaciaczyk, Jarek
dc.contributor.authorGlunde, Kristine
dc.contributor.authorEberhart, Charles G.
dc.date.accessioned2017-06-16T20:07:58Z
dc.date.available2017-06-16T20:07:58Z
dc.date.issued2016-03-01
dc.identifier.citationKahlert, Ulf D.; Cheng, Menglin; Koch, Katharina; Marchionni, Luigi; Fan, Xing; Raabe, Eric H.; Maciaczyk, Jarek; Glunde, Kristine; Eberhart, Charles G. (2016). "Alterations in cellular metabolome after pharmacological inhibition of Notch in glioblastoma cells." International Journal of Cancer 138(5): 1246-1255.
dc.identifier.issn0020-7136
dc.identifier.issn1097-0215
dc.identifier.urihttps://hdl.handle.net/2027.42/137225
dc.publisherWiley Periodicals, Inc.
dc.subject.otherglycolysis
dc.subject.otherWNT
dc.subject.otherglioma
dc.subject.otherNotch
dc.subject.othermetabolism
dc.subject.otherglutamate
dc.subject.otherglutaminase
dc.subject.otherGBM
dc.subject.otherGSI
dc.subject.otherMRK003
dc.titleAlterations in cellular metabolome after pharmacological inhibition of Notch in glioblastoma cells
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137225/1/ijc29873.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137225/2/ijc29873_am.pdf
dc.identifier.doi10.1002/ijc.29873
dc.identifier.sourceInternational Journal of Cancer
dc.identifier.citedreferenceRighi V, Andronesi OC, Mintzopoulos D, et al. High‐resolution magic angle spinning magnetic resonance spectroscopy detects glycine as a biomarker in brain tumors. Int J Oncol 2010; 36: 301 – 6.
dc.identifier.citedreferenceLopez WOC, Nikkhah G, Kahlert UD, et al. Clinical neurotransplantation protocol for Huntington’s and Parkinson’s disease. Restor Neurol Neurosci 2013; 31: 579 – 95.
dc.identifier.citedreferenceGlunde K, Shah T, Winnard PT, et al. Hypoxia regulates choline kinase expression through hypoxia‐inducible factor‐1 alpha signaling in a human prostate cancer model. Cancer Res 2008; 68: 172 – 80.
dc.identifier.citedreferenceSchreck KC, Taylor P, Marchionni L, et al. The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res 2010; 16: 6060 – 70.
dc.identifier.citedreferenceKortenhorst MSQ, Wissing MD, Rodríguez R, et al. Analysis of the genomic response of human prostate cancer cells to histone deacetylase inhibitors. Epigenetics 2013; 8: 907 – 20.
dc.identifier.citedreferenceGarcía‐García C, Ibrahim YH, Serra V, et al. Dual mTORC1/2 and HER2 blockade results in antitumor activity in preclinical models of breast cancer resistant to anti‐HER2 therapy. Clin Cancer Res 2012; 18: 2603 – 12.
dc.identifier.citedreferenceLiu J, Pan S, Hsieh MH, et al. Targeting Wnt‐driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci USA 2013; 110: 20224 – 9.
dc.identifier.citedreferenceWang J‐B, Erickson JW, Fuji R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 2010; 18: 207 – 19.
dc.identifier.citedreferenceFuerer C, Nusse R. Lentiviral vectors to probe and manipulate the Wnt signaling pathway. PLoS One 2010; 5: e9370.
dc.identifier.citedreferenceKahlert UD, Suwala AK, Koch K, et al. Pharmacologic Wnt inhibition reduces proliferation, survival, and clonogenicity of glioblastoma cells. J Neuropathol Exp Neurol 2015; 74: 889 – 900.
dc.identifier.citedreferenceSaito N, Fu J, Zheng S, et al. A high Notch pathway activation predicts response to γ secretase inhibitors in proneural subtype of glioma tumor‐initiating cells. Stem Cells 2014; 32: 301 – 12.
dc.identifier.citedreferenceZhang K, Zhang J, Han L, et al. Wnt/beta‐catenin signaling in glioma. J Neuroimmune Pharmacol 2012; 7: 740 – 9.
dc.identifier.citedreferenceBolós V, Grego‐Bessa J, de la Pompa JL. Notch signaling in development and cancer. Endocr Rev 2007; 28: 339 – 63.
dc.identifier.citedreferenceGillies RJ, Barry JA, Ross BD. In vitro and in vivo 13C and 31P NMR analyses of phosphocholine metabolism in rat glioma cells. Magn Reson Med 1994; 32: 310 − 18.
dc.identifier.citedreferenceDali‐Youcef N, Froelich S, Moussallieh F‐M, et al. Gene expression mapping of histone deacetylases and co‐factors, and correlation with survival time and 1H‐HRMAS metabolomic profile in human gliomas. Sci Rep 2015; 5: 9087.
dc.identifier.citedreferenceAl‐Saffar NMS, Marshall LV, Jackson LE, et al. Lactate and choline metabolites detected in vitro by nuclear magnetic resonance spectroscopy are potential metabolic biomarkers for PI3K inhibition in pediatric glioblastoma. PLoS One 2014; 9: e103835.
dc.identifier.citedreferenceVenkatesh HS, Chaumeil MM, Ward CS, et al. Reduced phosphocholine and hyperpolarized lactate provide magnetic resonance biomarkers of PI3K/Akt/mTOR inhibition in glioblastoma. Neuro Oncol 2012; 14: 315 – 25.
dc.identifier.citedreferenceKim D, Fiske BP, Birsoy K, et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 2015; 520: 363 – 7.
dc.identifier.citedreferenceBar EE, Lin A, Mahairaki V, et al. Hypoxia increases the expression of stem‐cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 2010; 177: 1491 – 502.
dc.identifier.citedreferenceJain M, Nilsson R, Sharma S, et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012; 336: 1040 – 4.
dc.identifier.citedreferenceXu J, Chi F, Guo T, et al. NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. J Clin Invest 2015; 125: 1579 – 90.
dc.identifier.citedreferenceGuidoni L, Ricci‐Vitiani L, Rosi A, et al. (1)H NMR detects different metabolic profiles in glioblastoma stem‐like cells. NMR Biomed 2014; 27: 129 – 45.
dc.identifier.citedreferenceRamm P, Bettscheider M, Beier D, et al. 1H‐nuclear magnetic resonance spectroscopy of glioblastoma cancer stem cells. Stem Cells Dev 2011; 20: 2189 – 95.
dc.identifier.citedreferenceAngulo‐Rojo C, Manning‐Cela R, Aguirre A, et al. Involvement of the Notch pathway in terminal astrocytic differentiation: role of PKA. ASN Neuro 2013; 5: e00130.
dc.identifier.citedreferenceChen R, Nishimura MC, Kharbanda S, et al. Hominoid‐specific enzyme GLUD2 promotes growth of IDH1R132H glioma. Proc Natl Acad Sci USA 2014; 111: 14217 – 22.
dc.identifier.citedreferenceCuperlovic‐Culf M, Ferguson D, Culf A, et al. 1H NMR metabolomics analysis of glioblastoma subtypes: correlation between metabolomics and gene expression characteristics. J Biol Chem 2012; 287: 20164 – 75.
dc.identifier.citedreferenceCassago A, Ferreira APS, Ferreira IM, et al. Mitochondrial localization and structure‐based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci USA 2012; 109: 1092 – 7.
dc.identifier.citedreferenceGao P, Tchernyshyov I, Chang T‐C, et al. cMyc suppression of miR‐23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762 – 5.
dc.identifier.citedreferenceSeltzer MJ, Bennett BD, Joshi AD, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 2010; 70: 8981 – 7.
dc.identifier.citedreferenceStalnecker CA, Ulrich SM, Li Y, et al. Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells. Proc Natl Acad Sci USA 2015; 112: 394 – 9.
dc.identifier.citedreferenceTanaka K, Sasayama T, Irino Y, et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest 2015; 125: 1591 – 602.
dc.identifier.citedreferenceStupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987 – 96.
dc.identifier.citedreferenceLathia JD, Mack SC, Mulkearns‐Hubert EE, et al. Cancer stem cells in glioblastoma. Genes Dev 2015; 29: 1203 – 17.
dc.identifier.citedreferenceTakebe N, Miele L, Harris PJ, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 2015; 12: 445 – 64.
dc.identifier.citedreferenceHarper JA, Yuan JS, Tan JB, et al. Notch signaling in development and disease. Clin Genet 2003; 64: 461 – 72.
dc.identifier.citedreferenceAguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem cell number and self‐renewal. Nature 2010; 467: 323 – 7.
dc.identifier.citedreferenceAllenspach EJ, Maillard I, Aster JC, et al. Notch signaling in cancer. Cancer Biol Ther 2002; 1: 466 – 76.
dc.identifier.citedreferenceTeodorczyk M, Schmidt MHH. Notching on cancer’s door: Notch signaling in brain tumors. Front Oncol 2014; 4: 341.
dc.identifier.citedreferenceDang CV. Links between metabolism and cancer. Genes Dev 2012; 26: 877 – 90.
dc.identifier.citedreferenceBi P, Shan T, Liu W, et al. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat Med 2014; 20: 911 − 18.
dc.identifier.citedreferenceCiofani M, Zúñiga‐Pflücker JC. Notch promotes survival of pre‐T cells at the beta‐selection checkpoint by regulating cellular metabolism. Nat Immunol 2005; 6: 881 – 8.
dc.identifier.citedreferenceMaekawa Y, Ishifune C, Tsukumo S‐I, et al. Notch controls the survival of memory CD4+ T cells by regulating glucose uptake. Nat Med 2015; 21: 55 – 61.
dc.identifier.citedreferenceBasak NP, Roy A, Banerjee S. Alteration of mitochondrial proteome due to activation of Notch1 signaling pathway. J Biol Chem 2014; 289: 7320 – 34.
dc.identifier.citedreferenceLandor SK‐J, Mutvei AP, Mamaeva V, et al. Hypo‐ and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms. Proc Natl Acad Sci USA 2011; 108: 18814 − 19.
dc.identifier.citedreferenceFan X, Khaki L, Zhu TS, et al. NOTCH pathway blockade depletes CD133‐positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells Dayt Ohio 2010; 28: 5 – 16.
dc.identifier.citedreferencede Groot J, Sontheimer H. Glutamate and the biology of gliomas. Glia 2011; 59: 1181 – 9.
dc.identifier.citedreferenceKahlert UD, Bender NO, Maciaczyk D, et al. CD133/CD15 defines distinct cell subpopulations with differential in vitro clonogenic activity and stem cell‐related gene expression profile in in vitro propagated glioblastoma multiforme‐derived cell line with a PNET‐like component. Folia Neuropathol Assoc Pol Neuropathol Med Res Cent Pol Acad Sci 2012; 50: 357 – 68.
dc.identifier.citedreferenceHeaphy CM, Schreck KC, Raabe E, et al. A glioblastoma neurosphere line with alternative lengthening of telomeres. Acta Neuropathol (Berl) 2013; 126: 607 – 8.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.