Show simple item record

Assessing the effects of a sequestered germline on interdomain lateral gene transfer in Metazoa

dc.contributor.authorJensen, Lindy
dc.contributor.authorGrant, Jessica R.
dc.contributor.authorLaughinghouse, Haywood Dail
dc.contributor.authorKatz, Laura A.
dc.date.accessioned2017-06-16T20:08:03Z
dc.date.available2017-08-01T14:25:48Zen
dc.date.issued2016-06
dc.identifier.citationJensen, Lindy; Grant, Jessica R.; Laughinghouse, Haywood Dail; Katz, Laura A. (2016). "Assessing the effects of a sequestered germline on interdomain lateral gene transfer in Metazoa." Evolution 70(6): 1322-1333.
dc.identifier.issn0014-3820
dc.identifier.issn1558-5646
dc.identifier.urihttps://hdl.handle.net/2027.42/137230
dc.publisherSinauer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMetazoa
dc.subject.otherweak link model
dc.subject.otherlateral gene transfer
dc.subject.otherhorizontal gene transfer
dc.subject.othergene loss
dc.subject.otherAnimals
dc.titleAssessing the effects of a sequestered germline on interdomain lateral gene transfer in Metazoa
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137230/1/evo12935_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137230/2/evo12935-sup-0001-figure1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137230/3/evo12935-sup-0002-Tables.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137230/4/evo12935.pdf
dc.identifier.doi10.1111/evo.12935
dc.identifier.sourceEvolution
dc.identifier.citedreferencePaganini, J., A. Campan‐Fournier, M. Da Rocha, P. Gouret, P. Pontarotti, E. Wajnberg, P. Abad, and E. G. J. Danchin. 2012. Contribution of lateral gene transfers to the genome composition and parasitic ability of root‐knot nematodes. PLoS One 7: e50875.
dc.identifier.citedreferencePenn, O., E. Privman, G. Landan, D. Graur, and T. Pupko. 2010. An alignment confidence score capturing robustness to guide tree uncertainty. Mol. Biol. Evol. 27: 1759 – 1767. doi: 10.1093/molbev/msq066.
dc.identifier.citedreferencePrice, M. N., P. S. Dehal, and A. P. Arkin. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26: 1641 – 1650. doi: 10.1093/molbev/msp077.
dc.identifier.citedreferencePrice, M. N.. 2010. FastTree 2: approximately maximum‐likelihood trees for large alignments. Plos One 5: 10. doi: 10.1371/journal.pone.0009490.
dc.identifier.citedreferenceRagan, M. A. 2001. On surrogate methods for detecting lateral gene transfer. FEMS Microbiol. Lett. 201: 187 – 191.
dc.identifier.citedreferenceRagan, M. A., T. J. Harlow, and R. G. Beiko. 2006. Do different surrogate methods detect lateral genetic transfer events of different relative ages ? Trends Microbiol. 14: 4 – 8.
dc.identifier.citedreferenceRyan, J. F., K. Pang, C. E. Schnitzler, A. D. Nguyen, R. T. Moreland, D. K. Simmons, B. J. Koch, W. R. Francis, P. Havlak, S. A. Smith, et al. 2013. The genome of the ctenophore Mnemiopsis leidyi and its Implications for cell type evolution. Science 342: 1336 – 1344. doi:  10.1126/science.1242592.
dc.identifier.citedreferenceSchönknecht, G., W.‐H. Chen, C. M. Ternes, G. G. Barbier, R. P. Shrestha, M. Stanke, A. Bräutigam, B. J. Baker, J. F. Banfield, and R. M. Garavito. 2013. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339: 1207 – 1210.
dc.identifier.citedreferenceSchönknecht, G., A. P. M. Weber, and M. J. Lercher. 2014. Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution. BioEssays 36: 9 – 20. doi: 10.1002/bies.201300095.
dc.identifier.citedreferenceShibata, T. F., T. Oji, K. Akasaka, and K. Agata. 2010. Staging of regeneration process of an arm of the feather star Oxycomanthus japonicus focusing on the oral‐aboral boundary. Dev. Dyn. 239: 2947 – 2961. doi: 10.1002/dvdy.22429.
dc.identifier.citedreferenceShu, D. G., Y. Isozaki, X. L. Zhang, J. Han, and S. Maruyama. 2014. Birth and early evolution of metazoans. Gondwana Res. 25: 884 – 895. doi: 10.1016/j.gr.2013.09.001.
dc.identifier.citedreferenceSimpson, T. L. 1980. Reproductive processes in sponges—a critical‐evaluation of current data and views. Int. J. Invertebr. Repr. 2: 251 – 269.
dc.identifier.citedreferenceSimpson, T. L.. 1984. The cell biology of sponges. Vol. i‐xiv. Pp. 1 – 662. Springer, New York.
dc.identifier.citedreferenceSloan, D. B., and N. A. Moran. 2012. Endosymbiotic bacteria as a source of carotenoids in whiteflies. Biol. Lett. 8: 986 – 989.
dc.identifier.citedreferenceSoucy, S. M., J. Huang, and J. P. Gogarten. 2015. Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16: 472 – 482.
dc.identifier.citedreferenceStarcevic, A., S. Akthar, W. C. Dunlap, J. M. Shick, D. Hranueli, J. Cullum, and P. F. Long. 2008. Enzymes of the shikimic acid pathway encoded in the genome of a basal metazoan, Nematostella vectensis, have microbial origins. Proc. Natl. Acad. Sci. 105: 2533 – 2537. doi: 10.1073/pnas.0707388105.
dc.identifier.citedreferenceStarz‐Gaiano, M., and R. Lehmann. 2001. Moving towards the next generation. Mech. Dev. 105: 5 – 18. doi: 10.1016/S0925-4773(01)00392-6.
dc.identifier.citedreferenceSyvanen, M. 2012. Evolutionary implications of horizontal gene transfer. Ann. Rev. Genet. 46: 341 – 358. doi: 10.1146/annurev-genet-110711-155529.
dc.identifier.citedreferenceTsurumi, M., and H. M. Reiswig. 1997. Sexual versus asexual reproduction in an oviparous rope‐form sponge, Aplysina cauliformis (Porifera; Verongida). Invertebr. Reprod. Dev. 32: 1 – 9. doi: 10.1080/07924259.1997.9672598.
dc.identifier.citedreferenceWedi, S. E., and D. F. Dunn. 1983. Gametogenesis and reproductive periodicity of the subtidal sea anemone Urticina lofotensis (Coelenterata: Actiniaria) in California. Biol. Bull. 165: 458 – 472.
dc.identifier.citedreferenceWhitaker, J. W., G. A. McConkey, and D. R. Westhead. 2009. The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes. Genome Biol. 10: 1 – 13. doi: 10.1186/gb-2009-10-4-r36.
dc.identifier.citedreferenceWijayawardena, B. K., D. J. Minchella, and J. A. DeWoody. 2013. Hosts, parasites, and horizontal gene transfer. Trends Parasitol. 29: 329 – 338.
dc.identifier.citedreferenceWolf, Y. I., and E. V. Koonin. 2013. Genome reduction as the dominant mode of evolution. Bioessays 35: 829 – 837.
dc.identifier.citedreferenceZhang, Z. Q. 2013. Animal biodiversity: an update of classification and diversity in 2013. Zootaxa 3703: 5 – 11.
dc.identifier.citedreferenceAgata, K., and T. Inoue. 2012. Survey of the differences between regenerative and non‐regenerative animals. Dev. Growth Diff. 54: 143 – 152. doi: 10.1111/j.1440-169X.2011.01323.x.
dc.identifier.citedreferenceAlie, A., L. Leclere, M. Jager, C. Dayraud, P. R. Chang, H. Le Guyader, E. Queinnec, and M. Manuel. 2011. Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of “germline genes” with stemness. Dev. Biol. 350: 183 – 197. doi: 10.1016/j.ydbio.2010.10.019.
dc.identifier.citedreferenceAlmen, M. S., K. J. V. Nordstrom, R. Fredriksson, and H. B. Schioth. 2009. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 7: 14. doi: 10.1186/1741-7007-7-50.
dc.identifier.citedreferenceAltschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403 – 410.
dc.identifier.citedreferenceAndersson, J. O. 2005. Lateral gene transfer in eukaryotes. Cell. Mol. Life Sci. 62: 1182 – 1197. doi: 10.1007/s00018-005-4539-z.
dc.identifier.citedreferenceAndersson, J. O., W. F. Doolittle, and C. L. Nesbø. 2001. Are there bugs in our genome ? Science 292: 1848 – 1850.
dc.identifier.citedreferenceBoschetti, C., A. Carr, A. Crisp, I. Eyres, Y. Wang‐Koh, E. Lubzens, T. G. Barraclough, G. Micklem, and A. Tunnacliffe. 2012. Biochemical diversification through foreign gene expression in bdelloid rotifers. PLoS Genet. 8: e1003035. doi: 10.1371/journal.pgen.1003035.
dc.identifier.citedreferenceBoto, L. 2010. Horizontal gene transfer in evolution: facts and challenges. Proc. R. Soc. B Biol. Sci. 277: 819 – 827. doi: 10.1098/rspb.2009.1679.
dc.identifier.citedreferenceBoto, L.. 2014. Horizontal gene transfer in the acquisition of novel traits by metazoans. Proc. R. Soc. B Biol. Sci. 281:20132450. doi:10.1098/rspb.2013.2450
dc.identifier.citedreferenceBrusca, R. C., and G. J. Brusca. 2003. Invertebrates. Sinauer, Sunderland.
dc.identifier.citedreferenceChapman, J. A., E. F. Kirkness, O. Simakov, S. E. Hampson, T. Mitros, T. Weinmaier, T. Rattei, P. G. Balasubramanian, J. Borman, D. Busam, et al. 2010. The dynamic genome of Hydra. Nature 464: 592 – 596. doi: 10.1038/nature08830.
dc.identifier.citedreferenceChen, F., A. J. Mackey, C. J. Stoeckert, and D. S. Roos. 2006. OrthoMCL‐DB: querying a comprehensive multi‐species collection of ortholog groups. Nucleic Acids Res. 34 ( Suppl. 1 ): D363 – D368.
dc.identifier.citedreferenceCobbs, C., J. Heath, J. O. Stireman, and P. Abbot. 2013. Carotenoids in unexpected places: gall midges, lateral gene transfer, and carotenoid biosynthesis in animals. Mol. Phylogenet. Evol. 68: 221 – 228.
dc.identifier.citedreferenceCollins, J. J., B. Wang, B. G. Lambrus, M. E. Tharp, H. Iyer, and P. A. Newmark. 2013. Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature 494: 476 – 479. doi: 10.1038/nature11924.
dc.identifier.citedreferenceCrisp, A., C. Boschetti, M. Perry, A. Tunnacliffe, and G. Micklem. 2015. Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol. 16: 50. doi: 10.1186/s13059-015-0607-3.
dc.identifier.citedreferenceDagan, T. 2011. Phylogenomic networks. Trends Microbiol. 19: 483 – 491.
dc.identifier.citedreferenceDagan, T., and W. Martin. 2009. Getting a better picture of microbial evolution en route to a network of genomes. Phil. Trans. Biol. Sci. 364: 21870 – 2196.
dc.identifier.citedreferenceDanchin, E. G. J., M.‐N. Rosso, P. Vieira, J. de Almeida‐Engler, P. M. Coutinho, B. Henrissat, and P. Abad. 2010. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc. Natl. Acad. Sci. 107: 17651 – 17656. doi: 10.1073/pnas.1008486107.
dc.identifier.citedreferenceDavid, C. N. 2012. Interstitial stem cells in Hydra: multipotency and decision‐making. Int. J. Dev. Biol. 56: 489 – 497. doi: 10.1387/ijdb.113476cd.
dc.identifier.citedreferenceDavison, J. 1999. Genetic exchange between bacteria in the environment. Plasmid 42: 73 – 91. doi: 10.1006/plas.1999.1421.
dc.identifier.citedreferenceDoolittle, W. F. 1999. Phylogenetic classification and the universal tree. Science 284: 2124 – 2128. doi: 10.1126/science.284.5423.2124.
dc.identifier.citedreferenceDunning Hotopp, J. C. 2011. Horizontal gene transfer between bacteria and animals. Trends Genet. 27: 157 – 163. doi: 10.1016/j.tig.2011.01.005.
dc.identifier.citedreferenceEckelbarger, K. J., P. A. Tyler, and R. W. Langton. 1998. Gonadal morphology and gametogenesis in the sea pen Pennatula aculeata (Anthozoa: Pennatulacea) from the Gulf of Maine. Mar. Biol. 132: 677 – 690.
dc.identifier.citedreferenceEdgecombe, G. D., G. Giribet, C. W. Dunn, A. Hejnol, R. M. Kristensen, R. C. Neves, G. W. Rouse, K. Worsaae, and M. V. Sorensen. 2011. Higher‐level metazoan relationships: recent progress and remaining questions. Org. Divers. Evol. 11: 151 – 172. doi: 10.1007/s13127-011-0044-4.
dc.identifier.citedreferenceErwin, D. H., M. Laflamme, S. M. Tweedt, E. A. Sperling, D. Pisani, and K. J. Peterson. 2011. The Cambrian Conundrum: early divergence and later ecological success in the early history of animals. Science 334: 1091 – 1097. doi: 10.1126/science.1206375.
dc.identifier.citedreferenceEwen‐Campen, B., E. E. Schwager, and C. G. M. Extavour. 2010. The molecular machinery of germ line specification. Mol. Reprod. Dev. 77: 3 – 18. doi: 10.1002/mrd.21091.
dc.identifier.citedreferenceExtavour, C. G., and M. Akam. 2003. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130: 5869 – 5884. doi: 10.1242/dev.00804.
dc.identifier.citedreferenceExtavour, C. G., K. Pang, D. Q. Matus, and M. Q. Martindale. 2005. vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evol. Dev. 7: 201 – 215. doi: 10.1111/j.1525-142X.2005.05023.x.
dc.identifier.citedreferenceExtavour, C. G. M. 2007. Evolution of the bilaterian germ line: lineage origin and modulation of specification mechanisms. Integrative and Comparative Biology no. 47 ( 5 ): 770 ‐ 785. doi: 10.1093/icb/icm027.
dc.identifier.citedreferenceEyres, I., C. Boschetti, A. Crisp, T. P. Smith, D. Fontaneto, A. Tunnacliffe, and T. G. Barraclough. 2015. Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats. BMC Biol. 13: 1.
dc.identifier.citedreferenceFlot, J.‐F., B. Hespeels, X. Li, B. Noel, I. Arkhipova, E. G. J. Danchin, A. Hejnol, B. Henrissat, R. Koszul, J.‐M. Aury, et al. 2013. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500: 453 – 457.
dc.identifier.citedreferenceFredriksson, R., K. J. V. Nordstrom, O. Stephansson, M. G. A. Hagglund, and H. B. Schioth. 2008. The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett. 582: 3811 – 3816. doi: 10.1016/j.febslet.2008.10.016.
dc.identifier.citedreferenceFunayama, N. 2010. The stem cell system in demosponges: insights into the origin of somatic stem cells. Dev. Growth Diff. 52: 1 – 14. doi: 10.1111/j.1440-169X.2009.01162.x.
dc.identifier.citedreferenceGaino, E., B. Burlando, L. Zunino, M. Pansini, and P. Buffa. 1984. Origin of male gametes from choanocytes in Spongia officinalis (Porifera, Demospongiae). Int. J. Invertebr. Repr. Dev. 7: 83 – 93.
dc.identifier.citedreferenceGaino, E., B. Burlando, and P. Buffa. 1986. Contribution to the study of egg development and derivation in Oscarella lobularis (Porifera, Demospongiae). Int. J. Invertebr. Repr. Dev. 9: 59 – 69.
dc.identifier.citedreferenceGalliot, B., M. Mijkovic‐Licina, R. de Rosa, and S. Chera. 2006. Hydra, a niche for cell and developmental plasticity. Sem. Cell Dev. Biol. 17: 492 – 502. doi: 10.1016/j.semcdb.2006.05.005.
dc.identifier.citedreferenceGiani, V. C., E. Yamaguchi, M. J. Boyle, and E. C. Seaver. 2011. Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid Capitella teleta. Evodevo 2: 18. doi:  10.1186/2041-9139-2-10.
dc.identifier.citedreferenceGladyshev, E. A., M. Meselson, and I. R. Arkhipova. 2008. Massive horizontal gene transfer in bdelloid rotifers. Science 320: 1210 – 1213. doi: 10.1126/science.1156407.
dc.identifier.citedreferenceGogarten, J. P., W. F. Doolittle, and J. G. Lawrence. 2002. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19: 2226 – 2238.
dc.identifier.citedreferenceGrant, J. R., and L. A. Katz. 2014. Building a phylogenomic pipeline for the eukaryotic tree of life ‐ addressing deep phylogenies with genome‐scale data. PLoS Curr. 6. doi: 10.1371/currents.tol.c24b6054aebf3602748ac042ccc8f2e9.
dc.identifier.citedreferenceGregory, T. R. 2001. Coincidence, coevolution, or causation? DNA content, cell size, and the C‐value enigma. Biol. Rev. 76: 65 – 101. doi: 10.1111/j.1469-185X.2000.tb00059.x.
dc.identifier.citedreferenceGregory, T. R.. 2016. Animal genome size database. Available at http://www.genomesize.com.
dc.identifier.citedreferenceHaegeman, A., J. T. Jones, and E. G. J. Danchin. 2011. Horizontal gene transfer in nematodes: a catalyst for plant parasitism ? Mol. Plant Microbe Interact. 24: 879 – 887. doi: 10.1094/MPMI-03-11-0055.
dc.identifier.citedreferenceHarbison, G. R., and R. L. Miller. 1986. Not all ctenophores are hermaphrodites. Studies on the systematics, distribution, sexuality and development of two species of Ocyropsis. Mar. Biol. 90: 413 – 424.
dc.identifier.citedreferenceHuang, J. 2013. Horizontal gene transfer in eukaryotes: the weak‐link model. BioEssays 35: 868 – 875. doi: 10.1002/bies.201300007.
dc.identifier.citedreferenceJackson, D. J., L. Macis, J. Reitner, and G. Wörheide. 2011. A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy. BMC Evol. Biol. 11:238. doi: 10.1186/1471-2148-11-238.
dc.identifier.citedreferenceJain, R., M. C. Rivera, and J. A. Lake. 1999. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA 96: 3801 – 3806.
dc.identifier.citedreferenceJain, R., M. C. Rivera, J. E. Moore, and J. A. Lake. 2003. Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol. 20: 1598 – 1602. doi: 10.1093/molbev/msg154.
dc.identifier.citedreferenceJuliano, C. E., S. Z. Swartz, and G. M. Wessel. 2010. A conserved germline multipotency program. Development 137: 4113 – 4126. doi: 10.1242/dev.047969.
dc.identifier.citedreferenceJust, J., R. M. Kristensen, and J. Olesen. 2014. Dendrogramma, new genus, with two new non‐bilaterian species from the marine bathyal of southeastern Australia (animalia, metazoa incertae sedis)—with similarities to some medusoids from the precambrian ediacara. Plos One 9: e102976. doi:  10.1371/journal.pone.0102976.
dc.identifier.citedreferenceKanehisa, M., and S. Goto. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27 – 30.
dc.identifier.citedreferenceKatz, L. A. 2002. Lateral gene transfers and the evolution of eukaryotes: theories and data. Int. J. Syst. Evol. Microbiol. 52: 1893 – 1900. doi: 10.1099/ijs.0.02113-0.
dc.identifier.citedreferenceKatz, L. A.. 2012. Origin and diversification of eukaryotes. Ann. Rev. Microbiol. 66: 411 – 427.
dc.identifier.citedreferenceKatz, L. A.. 2015. Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception of endosymbiotic gene transfers, few ancient transfer events persist. Phil. Trans. R. Soc. B 370:20140324. doi:10.1098/rstb.2014.0324.
dc.identifier.citedreferenceKeeling, P. J., and J. D. Palmer. 2008. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9: 605 – 618. doi: 10.1038/nrg2386.
dc.identifier.citedreferenceKlasson, L., Z. Kambris, P. E. Cook, T. Walker, and S. P. Sinkins. 2009. Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genom. 10:33. doi: 10.1186/1471-2164-10-33.
dc.identifier.citedreferenceKomai, T. 1922. Studies on two aberrant ctenophores: Coeloplana and Gastrodes. Author, Kyoto.
dc.identifier.citedreferenceKondrashov, F. A., E. V. Koonin, I. G. Morgunov, T. V. Finogenova, and M. N. Kondrashova. 2006. Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation. Biol. Direct 1: 1 – 14. doi: 10.1186/1745-6150-1-31.
dc.identifier.citedreferenceKoning, A. P. de, F. S. L. Brinkman, S. J. M. Jones, and P. J. Keeling. 2000. Lateral gene transfer and metabolic adaptation in the human parasite Trichomonas vaginalis. Mol. Biol. Evol. 17: 1769 – 1773.
dc.identifier.citedreferenceLawrence, J. G., and H. Hendrickson. 2003. Lateral gene transfer: when will adolescence end ? Mol. Microbiol. 50: 739 – 749.
dc.identifier.citedreferenceLawrence, J. G., and H. Ochman. 2002. Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10: 1 – 4.
dc.identifier.citedreferenceLehmann, R., and B. E. Richardson. 2010. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat. Rev. Mol. Cell Biol. 11. 37–49. doi:10.1038/nrm2815
dc.identifier.citedreferenceLynch, M., and J. S. Conery. 2000. The evolutionary fate and consequences of duplicate genes. Science 290: 1151 – 1155. doi: 10.1126/science.290.5494.1151.
dc.identifier.citedreferenceNakashima, K., L. Yamada, Y. Satou, J.‐i. Azuma, and N. Satoh. 2004. The evolutionary origin of animal cellulose synthase. Dev. Genes Evol. 214: 81 – 88. doi: 10.1007/s00427-003-0379-8.
dc.identifier.citedreferenceNelson, K. E., R. A. Clayton, S. R. Gill, M. L. Gwinn, R. J. Dodson, D. H. Haft, E. K. Hickey, J. D. Peterson, W. C. Nelson, K. A. Ketchum, et al. 1999. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399: 323 – 329. doi: 10.1038/20601.
dc.identifier.citedreferenceNewmark, P. A., Y. Wang, and T. Chong. 2008. Germ cell specification and regeneration in planarians. Cold Spring Harb. Symp. Quant. Biol. 73: 573 – 581. doi: 10.1101/sqb.2008.73.022.
dc.identifier.citedreferenceNikoh, N., and A. Nakabachi. 2009. Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol. 7. 12 doi: 10.1186/1741-7007-7-12.
dc.identifier.citedreferenceNishimiya‐Fujisawa, C., and S. Kobayashi. 2012. Germline stem cells and sex determination in Hydra. Int. J. Dev. Biol. 56: 499 – 508. doi: 10.1387/ijdb.123509cf.
dc.identifier.citedreferenceOchman, H., J. G. Lawrence, and E. A. Groisman. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299 – 304. doi: 10.1038/35012500.
dc.identifier.citedreferenceOkamoto, M., H. Ohsawa, T. Hayashi, K. Owaribe, and P. A. Tsonis. 2007. Regeneration of retinotectal projections after optic tectum removal in adult newts. Mol. Vis. 13: 2112 – 2118.
dc.identifier.citedreferencePál, C., B. Papp, and M. J. Lercher. 2005. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. 37: 1372 – 1375. doi: 10.1038/ng1686.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.