Show simple item record

Heteroatom Tuning of Bimolecular Criegee Reactions and Its Implications

dc.contributor.authorKumar, Manoj
dc.contributor.authorFrancisco, Joseph S.
dc.date.accessioned2017-06-16T20:08:32Z
dc.date.available2017-12-01T21:54:13Zen
dc.date.issued2016-10-17
dc.identifier.citationKumar, Manoj; Francisco, Joseph S. (2016). "Heteroatom Tuning of Bimolecular Criegee Reactions and Its Implications." Angewandte Chemie International Edition 55(43): 13432-13435.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/137246
dc.description.abstractHigh‐level quantum‐chemical calculations have been performed to understand the key reactivity determinants of bimolecular reactions of Criegee intermediates and H2X (X=O, S, Se, and Te). Criegee intermediates are implicated as key intermediates in atmospheric, synthetic organic, and enzymatic chemistry. Generally, it is believed that the nature and location of substituents at the carbon of the Criegee intermediate play a key role in determing the reactivity. However, the present work suggests that it is not only the substitution of the Criegee intermediate, but the nature of the heteroatom in H2X that also plays a crucial role in determining the reactivity of the interaction between the Criegee intermediate and H2X. The barriers for the reactions of Criegee intermediates and H2X satisfy an inverse correlation with the bond strength of X−H in H2X, and a direct correlation with the first pKa of H2X. This heteroatom tuning causes a substantial barrier lowering of 8–11 kcal mol−1 in the Criegee reaction barrier in going from H2O to H2Te. An important implication of these results is that the reaction of the Criegee intermediate and H2S could be a source of thioaldehydes, which are important in plantery atmospheres and synthetic organic chemistry. By performing the reaction of Criegee intermediates and H2S under water or acid catalysis, thioladehydes could be detected in a hydrogen‐bonded complexed state, which is significantly more stable than their uncomplexed form. As a result, simpler aliphatic thioaldehydes could be selectively synthesized in the laboratory, which, otherwise, has been a significant synthetic challenge because of their ability to oligomerize.Gas‐phase reactions: The calculated barriers for the bimolecular reactions of Criegee intermediates and H2X inversely correlate with the bond strength of the X−H bond of H2X or directly correlate with the first pKa value of H2X. Thus, it is not only the substitutions of Criegee intermediates but also the properties of the heteroatom in H2X that play a crucial role in determining the reactivity.
dc.publisherUniversity Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCriegee intermediates
dc.subject.otherorganocatalysis
dc.subject.otherwater catalysis
dc.subject.otherchalcogen hydrides
dc.subject.otheratmospheric chemistry
dc.titleHeteroatom Tuning of Bimolecular Criegee Reactions and Its Implications
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137246/1/anie201604848_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137246/2/anie201604848-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137246/3/anie201604848.pdf
dc.identifier.doi10.1002/anie.201604848
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceR. P. Bell, The proton in Chemistry, 2nd ed., Cornell University Press, Ithaca, 1973.
dc.identifier.citedreferenceM. W. Sinclair, N. Fourikis, J. C. Ribes, B. J. Robinson, R. D. Brown, P. D. Godfrey, Aust. J. Phys. 1973, 26, 85 – 91.
dc.identifier.citedreferenceY. Ma, R. A. Porter, D. Chappell, A. T. Russell, G. Marston, Phys. Chem. Chem. Phys. 2009, 11, 4184.
dc.identifier.citedreferenceC. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. W. K. Mok, D. E. Shallcross, C. J. Percival, Phys. Chem. Chem. Phys. 2012, 14, 10391.
dc.identifier.citedreferenceO. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, C. A. Taatjes, Science 2012, 335, 204.
dc.identifier.citedreferenceC. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, C. J. Percival, Science 2013, 340, 177.
dc.identifier.citedreferenceL. Vereecken, Science 2013, 340, 154 – 155.
dc.identifier.citedreferenceJ. A. Ragan, D. J. am Ende, S. J. Brenek, S. A. Eisenbreis, R. A. Singer, D. L. Tickner, J. J. Teixeira, B. C. Vanderplas, N. Weston, Org. Process Res. Dev. 2003, 7, 155 – 160.
dc.identifier.citedreferenceR. H. Callighan, M. H. Wilt, J. Org. Chem. 1961, 26, 4912 – 4914.
dc.identifier.citedreferenceS. G. Van Ornum, R. M. Champeau, R. Pariza, Chem. Rev. 2006, 106, 2990 – 3001.
dc.identifier.citedreferenceH. Leisch, K. Morley, P. Lau, Chem. Rev. 2011, 111, 4165 – 4222.
dc.identifier.citedreferenceA. Baeyer, V. Villiger, Ber. Dtsch. Chem. Ges. 1899, 32, 3625 – 3633.
dc.identifier.citedreferenceJ. M. Anglada, J. Gonzalez, M. Torrent-Sucarrat, Phys. Chem. Chem. Phys. 2011, 13, 13034.
dc.identifier.citedreferenceD. A. Johnson, Some Thermodynamic Aspects of Inorganic Chemistry, 2nd ed., University Press, Cambridge, 1982, p.  207.
dc.identifier.citedreferenceN. J. Evans, C. H. Townes, H. F. Weaver, D. R. Williams, Science 1970, 169, 680 – 681.
dc.identifier.citedreferenceY. C. Minh, W. M. Irvine, M. K. Brewer, Astron. Astrophys. 1991, 244, 181 – 189.
dc.identifier.citedreferenceM. Agúndez, J. P. Fonfría, J. Cernicharo, J. R. Pardo, M. Guélin, Astron. Astrophys. 2008, 479, 493 – 501.
dc.identifier.citedreferenceC. Comito, P. Schilke, T. G. Phillips, D. C. Lis, F. Motte, D. Mehringer, Astrophys. J. Suppl. Ser. 2005, 156, 127 – 167.
dc.identifier.citedreferenceL. M. Woodney, M. F. A′Hearn, J. McMullin, N. Samarasinha, Earth Moon Planets 1997, 78, 69 – 70.
dc.identifier.citedreferenceE. Vedejs, T. H. Eberlein, D. L. Varie, J. Am. Chem. Soc. 1982, 104, 1445 – 1447.
dc.identifier.citedreferenceR. Okazaki in Organsulfur Chemistry (Ed.: P. D. Page ), Academic Press, London, 1995, p.  226.
dc.identifier.citedreferenceF. Duus, Comprehensive Organic Chemistry, Vol. 3 (Eds.: D. H. R. Barton, W. D. Ollis ), Pergamon, Oxford, 1979, p.  373.
dc.identifier.citedreferenceR. H. Judge, G. W. King, Can. J. Phys. 1975, 53, 1927 – 1928.
dc.identifier.citedreferenceD. Johnson, G. Marston, Chem. Soc. Rev. 2008, 37, 699 – 716.
dc.identifier.citedreferenceK. E. Leather, M. R. McGillen, M. C. Cooke, S. R. Utembe, A. T. Archibald, M. E. Jenkin, R. G. Derwent, D. E. Shallcross, C. J. Percival, Atmos. Chem. Phys. 2012, 12, 469.
dc.identifier.citedreferenceR. L. Mauldin   III, T. Berndt, M. Sipil., P. Paasonen, T. Petäjä, S. Kim, T. Kurtén, F. Stratmann, V.-M. Kerminen, M. Kulmala, Nature 2012, 488, 193.
dc.identifier.citedreferenceK. J. Heaton, R. L. Sleighter, P. G. Hatcher, W. A. Hall, M. V. Johnston, Environ. Sci. Technol. 2009, 43, 7797.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.