Show simple item record

Extending the Row of Lanthanide Tetrafluorides: A Combined Matrixâ Isolation and Quantumâ Chemical Study

dc.contributor.authorVent‐schmidt, Thomas
dc.contributor.authorFang, Zongtang
dc.contributor.authorLee, Zachary
dc.contributor.authorDixon, David
dc.contributor.authorRiedel, Sebastian
dc.date.accessioned2017-06-16T20:08:57Z
dc.date.available2017-06-16T20:08:57Z
dc.date.issued2016-02
dc.identifier.citationVent‐schmidt, Thomas ; Fang, Zongtang; Lee, Zachary; Dixon, David; Riedel, Sebastian (2016). "Extending the Row of Lanthanide Tetrafluorides: A Combined Matrixâ Isolation and Quantumâ Chemical Study." Chemistry â A European Journal 22(7): 2406-2416.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/137267
dc.description.abstractOnly the neutral tetrafluorides of Ce, Pr, and Tb as well as the [LnF7]3â anions of Dy and Nd, with the metal in the +IV oxidation state, have been previously reported. We report our attempts to extend the row of neutral lanthanide tetrafluorides through the reaction of laserâ ablated metal atoms with fluorine and their stabilization and characterization by matrixâ isolation IR spectroscopy. In addition to the above three tetrafluorides, we found two new tetrafluorides, 3NdF4 and 7DyF4, both of which are in the +IV oxidation state, which extends this lanthanide oxidation state to two new metals. Our experimental results are supported by quantumâ chemical calculations and the role of the lanthanide oxidation state is discussed for both the LnF4 and [LnF4]â species. Most of the LnF4 species are predicted to be in the +IV oxidation state and all of the [LnF4]â anions are predicted to be in the +III oxidation state. The LnF4 species are predicted to be strong oxidizing agents and the LnF3 species are predicted to be moderate to strong Lewis acids.Lanthanide tetrafluorides extended: Two new tetrafluorides, 3NdF4 and 7DyF4, both of which are in the +IV oxidation state, are reported; these compounds extend the examples of neutral lanthanide tetrafluorides beyond those of Ce, Pr, and Tb. The new compounds were formed by reaction of laserâ ablated metal atoms with fluorine and their stabilization and characterization by matrixâ isolation IR spectroscopy are supported by quantumâ chemical calculations (see figure).
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfluorine
dc.subject.otherelectronic structure
dc.subject.otherhigh oxidation states
dc.subject.otherlanthanides
dc.subject.othermatrix-isolation
dc.titleExtending the Row of Lanthanide Tetrafluorides: A Combined Matrixâ Isolation and Quantumâ Chemical Study
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137267/1/chem201504182.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137267/2/chem201504182-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/chem.201504182
dc.identifier.sourceChemistry â A European Journal
dc.identifier.citedreferenceX. Cao, M. Dolg, J. Mol. Struct. 2002, 581, 139 â 147.
dc.identifier.citedreferenceR. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
dc.identifier.citedreferenceA. D. Becke, J. Chem. Phys. 1993, 98, 5648 â 5652.
dc.identifier.citedreferenceC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785 â 789.
dc.identifier.citedreferenceN. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 1992, 70, 560 â 571.
dc.identifier.citedreferenceM. Dolg, H. Stoll, H. Preuss, J. Chem. Phys. 1989, 90, 1730.
dc.identifier.citedreferenceC. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618 â 622.
dc.identifier.citedreferenceJ. A. Pople, J. S. Binkley, R. Seeger, Int. J. Quantum Chem. Symp. 2009, 10, 1 â 19.
dc.identifier.citedreferenceR. A. Kendall, T. H. Dunning â Jr., R. J. Harrison, J. Chem. Phys. 1992, 96, 6796 â 6806.
dc.identifier.citedreferenceE. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429 â 1437; NBO 6.0: Natural Bond Orbital Analysis Program.
dc.identifier.citedreferenceE.â D. Glendening, J.â K. Badenhoop, A.â E. Reed, J.â E. Carpenter, J.â A. Bohmann, C.â M. Morales, C.â R. Landis, F. Weinhold, http://nbo6.chem.wisc. edu/, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013.
dc.identifier.citedreferenceF. Weinhold, in Encyclopedia of Computational Chemistry, Vol.â 3 (Ed.: P.â v.â R. Schleyer ), John Wiley & Sons, Chichester, 1998, pp.â 1792 â 1811.
dc.identifier.citedreferenceF. Weinhold, C. R. Landis, Valency and Bonding: A Natural Bond Orbital Donorâ Acceptor Perspective, University Press, Cambridge, 2005.
dc.identifier.citedreferenceA. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899 â 926.
dc.identifier.citedreferenceGaussianâ 09, Revisionâ D.01, M.â J. Frisch, G.â W. Trucks, H.â B. Schlegel, G.â E. Scuseria, M.â A. Robb, J.â R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.â A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.â P. Hratchian, A.â F. Izmaylov, J. Bloino, G. Zheng, J.â L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.â A. Montgomery,â Jr., J.â E. Peralta, F. Ogliaro, M. Bearpark, J.â J. Heyd, E. Brothers, K.â N. Kudin, V.â N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.â C. Burant, S.â S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.â J. Millam, M. Klene, J.â E. Knox, J.â B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.â E. Stratmann, O. Yazyev, A.â J. Austin, R. Cammi, C. Pomelli, J.â W. Ochterski, R.â L. Martin, K. Morokuma, V.â G. Zakrzewski, G.â A. Voth, P. Salvador, J.â J. Dannenberg, S. Dapprich, A.â D. Daniels, Ã . Farkas, J.â B. Foresman, J.â V. Ortiz, J. Cioslowski, D.â J. Fox, Gaussian, Inc., Wallingford, CT, 2009.
dc.identifier.citedreferenceS. Riedel, T. Koechner, X. Wang, L. Andrews, Inorg. Chem. 2010, 49, 7156 â 7164.
dc.identifier.citedreferenceT. Vent-Schmidt, F. Brosi, J. Metzger, T. Schloeder, X. Wang, L. Andrews, C. Mueller, H. Beckers, S. Riedel, Angew. Chem. Int. Ed. 2015, 54, 8279 â 8283; Angew. Chem. 2015, 127, 8397 â 8401.
dc.identifier.citedreferenceF. Brosi, T. Vent-Schmidt, S. Kieninger, T. Schlöder, H. T. Beckers, S. Riedel, Chem. Eur. J. 2015, 21, 16455 â 16462.
dc.identifier.citedreferenceV. N. Bukhmarina, A. Y. Gerasimov, Y. B. Predtechenskii, V. G. Shklyarik, Opt. Spektrosk. 1992, 72, 69 â 74.
dc.identifier.citedreferenceK. S. Thanthiriwatte, M. Vasiliu, S. R. Battey, Q. Lu, K. A. Peterson, L. Andrews, D. A. Dixon, J. Phys. Chem. A 2015, 119, 5790 â 5803.
dc.identifier.citedreferenceJ. Saloni, S. Roszak, K. Hilpert, M. Miller, J. Leszczynski, Eur. J. Inorg. Chem. 2004, 1212 â 1218.
dc.identifier.citedreferenceL. Bencze, A. Feltrin, S. Nunziante-Cesaro, A. Popovic, Rapid Commun. Mass Spectrom. 1996, 10, 1248 â 1258.
dc.identifier.citedreferenceT. Tsuchiya, T. Taketsugu, H. Nakano, K. Hirao, J. Mol. Struct. 1999, 461â 462, 203 â 222.
dc.identifier.citedreferenceR. D. Wesley, C. W. DeKock, J. Chem. Phys. 1971, 55, 3866 â 3877.
dc.identifier.citedreferenceM. Lesiecki, J. W. Nibler, C. W. DeKock, J. Chem. Phys. 1972, 57, 1352 â 1353.
dc.identifier.citedreferenceM. Hargittai, Coord. Chem. Rev. 1988, 91, 35 â 88.
dc.identifier.citedreferenceL. Joubert, G. Picard, J.-J. Legendre, Inorg. Chem. 1998, 37, 1984 â 1991.
dc.identifier.citedreferenceG. Lanza, C. Minichino, ChemPhysChem 2009, 10, 507 â 511.
dc.identifier.citedreferenceS. Tsukamoto, H. Mori, H. Tatewaki, E. Miyoshi, Chem. Phys. Lett. 2009, 474, 28 â 32.
dc.identifier.citedreferenceA. Weigand, X. Cao, J. Yang, M. Dolg, Theor. Chem. Acc. 2010, 126, 117 â 127.
dc.identifier.citedreferenceE. W. Kaiser, W. E. Falconer, W. Klemperer, J. Chem. Phys. 1972, 56, 5392 â 5398.
dc.identifier.citedreferenceR. H. Hauge, J. W. Hastie, J. L. Margrave, J. Less-Common Met. 1971, 23, 359 â 365.
dc.identifier.citedreferenceJ. W. Hastie, R. H. Hauge, J. L. Margrave, J. Less-Common Met. 1975, 39, 309 â 334.
dc.identifier.citedreferenceM. Chen, D. A. Dixon, X. Wang, H.-G. Cho, L. Andrews, J. Phys. Chem. A 2011, 115, 5609 â 5624.
dc.identifier.citedreferenceM. R. MacDonald, J. W. Ziller, W. J. Evans, M. R. MacDonald, J. W. Ziller, W. J. Evans, J. Am. Chem. Soc. 2011, 133, 15914 â 15917.
dc.identifier.citedreferenceM. R. MacDonald, J. E. Bates, M. E. Fieser, J. W. Ziller, F. Furche, W. J. Evans, J. Am. Chem. Soc. 2012, 134, 8420 â 8423.
dc.identifier.citedreferenceM. R. MacDonald, J. E. Bates, M. E. Fieser, J. W. Ziller, F. Furche, W. J. Evans, J. Am. Chem. Soc. 2013, 135, 9857 â 9868.
dc.identifier.citedreferenceG. Meyer, Angew. Chem. Int. Ed. 2014, 53, 3550 â 3551; Angew. Chem. 2014, 126, 3620 â 3622.
dc.identifier.citedreferenceJ. W. Hastie, R. H. Hauge, J. L. Margrave, High Temp. Sci. 1971, 3, 56 â 72.
dc.identifier.citedreferenceN. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Chapterâ 30, Pergamon Press, Oxford, 1994, pp.â 1423 â 1449.
dc.identifier.citedreferenceZ. Mazej, J. Fluorine Chem. 2002, 118, 127 â 129.
dc.identifier.citedreferenceV. I. Spitsyn, Y. M. Kiselev, L. I. Martynenko, V. N. Prusakov, V. B. Sokolov, Dokl. Akad. Nauk SSSR 1974, 219, 621 â 624.
dc.identifier.citedreferenceE. W. Kaiser, W. A. Sunder, W. E. Falconer, J. Less-Common Met. 1972, 27, 383 â 387.
dc.identifier.citedreferenceL. R. Batsanova, Y. V. Zakharâ ²ev, A. A. Alovskii, Zh. Neorg. Khim. 1973, 18, 905 â 908.
dc.identifier.citedreferenceS. D. Gabelnick, G. T. Reedy, M. G. Chasanov, J. Chem. Phys. 1974, 60, 1167 â 1171.
dc.identifier.citedreferenceT. Mikulas, M. Chen, D. A. Dixon, K. A. Peterson, Y. Gong, L. Andrews, Inorg. Chem. 2014, 53, 446 â 456.
dc.identifier.citedreferenceR. Hoppe, Rare Earths Mod. Sci. Technol. 1982, 3, 315 â 316.
dc.identifier.citedreferenceZ. Hu, G. Kaindl, B. G. Mueller, J. Alloys Compd. 1997, 246, 177 â 185.
dc.identifier.citedreferenceT. Vent-Schmidt, S. Riedel, Inorg. Chem. 2015, 54, 11114 â 11120.
dc.identifier.citedreferenceX. Wang, H.-G. Cho, L. Andrews, M. Chen, D. A. Dixon, H.-S. Hu, J. Li, J. Phys. Chem. A 2011, 115, 1913 â 1921.
dc.identifier.citedreferenceY. Gong, X. Wang, L. Andrews, M. Chen, D. A. Dixon, Organometallics 2011, 30, 4443 â 4452.
dc.identifier.citedreferenceY. Gong, L. Andrews, M. Chen, D. A. Dixon, J. Phys. Chem. A 2011, 115, 14581 â 14592.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.