Show simple item record

Recent Advances in the One‐Step Synthesis of Distally Fluorinated Ketones

dc.contributor.authorZeng, Yuwen
dc.contributor.authorNi, Chuanfa
dc.contributor.authorHu, Jinbo
dc.date.accessioned2017-06-16T20:08:59Z
dc.date.available2017-06-16T20:08:59Z
dc.date.issued2016-03-01
dc.identifier.citationZeng, Yuwen; Ni, Chuanfa; Hu, Jinbo (2016). "Recent Advances in the One‐Step Synthesis of Distally Fluorinated Ketones." Chemistry – A European Journal 22(10): 3210-3223.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/137269
dc.description.abstractFluorinated ketones are intriguing compounds in synthetic chemistry and life science‐related fields. The development of efficient methodologies to obtain these compounds is of significant importance and has therefore attracted considerable attention. This Minireview highlights recent progress made in the synthesis of fluorine‐containing ketones, with an emphasis on those methods in which the construction of carbonyl groups is synergetic with distal (β‐, γ‐, δ‐, etc.) incorporation of fluorine atoms or fluorinated groups.One step to fluorinated ketones: The development of efficient methodologies to obtain distally fluorinated ketones is a rapidly growing area of synthetic chemistry and life‐science‐related fields. In this Minireview, some recent important advances in this area are presented and their reaction mechanisms are also discussed.
dc.publisherWiley-VCH
dc.subject.otherone-pot synthesis
dc.subject.otherrearrangement
dc.subject.otherketones
dc.subject.otherfluoroalkylation
dc.subject.otherfluorination
dc.titleRecent Advances in the One‐Step Synthesis of Distally Fluorinated Ketones
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137269/1/chem201504036.pdf
dc.identifier.doi10.1002/chem.201504036
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceFor selected examples, see:
dc.identifier.citedreferenceO. G. Kulinkovich, D. G. Kananovich, M. Lopp, V. Snieckus, Adv. Synth. Catal. 2014, 356, 3615 – 3626.
dc.identifier.citedreferenceB. Ameduri, B. Boutevin, J. Fluorine Chem. 2000, 104, 53 – 62.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Dixon, J. Org. Chem. 1956, 21, 400 – 403;
dc.identifier.citedreferenceG. D. Crouse, J. D. Webster, J. Org. Chem. 1992, 57, 6643 – 6646;
dc.identifier.citedreferenceA. C. Sievert, W. R. Tong, M. J. Nappa, J. Fluorine Chem. 1991, 53, 397 – 417;
dc.identifier.citedreferenceV. A. Petrov, S. Swearingen, W. P. Hong, W. C. Petersen, J. Fluorine Chem. 2001, 109, 25 – 31;
dc.identifier.citedreferenceV. V. Rudyuk, D. V. Fedyuk, L. A. Yagupolskii, J. Fluorine Chem. 2004, 125, 1465 – 1471.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. J. Hacker, L. Gw, R. D. W. Kemmitt, J. Organomet. Chem. 1973, 47, 189 – 193;
dc.identifier.citedreferenceJ. A. K. Howard, S. A. R. Knox, N. J. Terrill, M. I. Yates, J. Chem. Soc. Chem. Commun. 1989, 640 – 642;
dc.identifier.citedreferenceD. J. Anderson, R. McDonald, M. Cowie, Angew. Chem. Int. Ed. 2007, 46, 3741 – 3744; Angew. Chem. 2007, 119, 3815 – 3818.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Ohashi, T. Kambara, T. Hatanaka, H. Saijo, R. Doi, S. Ogoshi, J. Am. Chem. Soc. 2011, 133, 3256 – 3259;
dc.identifier.citedreferenceM. Ohashi, M. Shibata, H. Saijo, T. Kambara, S. Ogoshi, Organometallics 2013, 32, 3631 – 3639.
dc.identifier.citedreferenceM. Ohashi, H. Saijo, M. Shibata, S. Ogoshi, Eur. J. Org. Chem. 2013, 443 – 447.
dc.identifier.citedreferenceH. Saijo, H. Sakaguchi, M. Ohashi, S. Ogoshi, Organometallics 2014, 33, 3669 – 3672.
dc.identifier.citedreferenceM. Ohashi, T. Kawashima, T. O. Taniguchi, K. Kikushima, S. Ogoshi, Organometallics 2015, 34, 1604 – 1607.
dc.identifier.citedreferenceM. Ohashi, H. Shirataki, K. Kikushima, S. Ogoshi, J. Am. Chem. Soc. 2015, 137, 6496 – 6499.
dc.identifier.citedreference 
dc.identifier.citedreferenceP. Kirsch, Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2012;
dc.identifier.citedreferenceK. Uneyama, Organofluorine Chemistry, John Wiley & Sons, 2008;
dc.identifier.citedreferenceS. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320 – 330;
dc.identifier.citedreferenceJ. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432 – 2506.
dc.identifier.citedreferenceFor reviews, see:
dc.identifier.citedreferenceJ.-P. Bégué, D. Bonnet-Delpon, Tetrahedron 1991, 47, 3207 – 3258;
dc.identifier.citedreferenceC. B. Kelly, M. A. Mercadante, N. E. Leadbeater, Chem. Commun. 2013, 49, 11133 – 11148.
dc.identifier.citedreference 
dc.identifier.citedreferenceI. P. Street, H. K. Lin, F. Laliberte, F. Ghomashchi, Z. Y. Wang, H. Perrier, N. M. Tremblay, Z. Huang, P. K. Weech, M. H. Gelb, Biochemistry 1993, 32, 5935 – 5940;
dc.identifier.citedreferenceP. R. Bernstein, B. C. Gomes, B. J. Kosmider, E. P. Vacek, J. C. Williams, J. Med. Chem. 1995, 38, 212 – 215;
dc.identifier.citedreferenceS. Chatterjee, M. A. Ator, D. Bozyczko-Coyne, K. Josef, G. Wells, R. Tripathy, M. Iqbal, R. Bihovsky, S. E. Senadhi, S. Mallya, T. M. O’Kane, B. A. McKenna, R. Siman, J. P. Mallamo, J. Med. Chem. 1997, 40, 3820 – 3828;
dc.identifier.citedreferenceD. L. Boger, H. Sato, A. E. Lerner, B. J. Austin, J. E. Patterson, M. P. Patricelli, B. F. Cravatt, Bioorg. Med. Chem. Lett. 1999, 9, 265 – 270;
dc.identifier.citedreferenceC. H. Cheng, E. M. Pearce, J. Polym. Sci. Pol. Chem. 1980, 18, 1871 – 1876.
dc.identifier.citedreferenceG. S. Garrett, S. J. McPhail, K. Tornheim, P. E. Correa, J. M. McIver, Bioorg. Med. Chem. Lett. 1999, 9, 301 – 306;
dc.identifier.citedreferenceR. R. Frey, C. K. Wada, R. B. Garland, M. L. Curtin, M. R. Michaelides, J. Li, L. J. Pease, K. B. Glaser, P. A. Marcotte, J. J. Bouska, S. S. Murphy, S. K. Davidsen, Bioorg. Med. Chem. Lett. 2002, 12, 3443 – 3447;
dc.identifier.citedreferenceV. Rodeschini, P. Van de Weghe, E. Salomon, C. Tarnus, J. Eustache, J. Org. Chem. 2005, 70, 2409 – 2412;
dc.identifier.citedreferenceM. Sani, R. Sinisi, F. Viani, Curr. Top. Med. Chem. 2006, 6, 1545 – 1566;
dc.identifier.citedreferenceD. M. Wallace, M. Haramura, J.-F. Cheng, T. Arrhenius, A. M. Nadzan, Bioorg. Med. Chem. Lett. 2007, 17, 1127 – 1130;
dc.identifier.citedreferenceY.-M. Shao, W.-B. Yang, T.-H. Kuo, K.-C. Tsai, C.-H. Lin, A.-S. Yang, P.-H. Liang, C.-H. Wong, Bioorg. Med. Chem. 2008, 16, 4652 – 4660;
dc.identifier.citedreferenceJ. Zhang, C. Huitema, C. Niu, J. Yin, M. N. G. James, L. D. Eltis, J. C. Vederas, Bioorg. Chem. 2008, 36, 229 – 240;
dc.identifier.citedreferenceJ. Rayo, L. Muñoz, G. Rosell, B. Hammock, A. Guerrero, F. J. Luque, R. Pouplana, J. Mol. Model. 2010, 16, 1753 – 1764;
dc.identifier.citedreferenceL. Muñoz, M. P. Bosch, L. Batllori, G. Rosell, D. Bosch, A. Guerrero, J. Avilla, Pest Manage. Sci. 2011, 67, 956 – 964;
dc.identifier.citedreferenceJ. P. Doucet, A. Doucet-Panaye, J. Devillers, SAR QSAR Environ. Res. 2013, 24, 481 – 499.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Mead, R. Loh, A. E. Asato, R. S. H. Liu, Tetrahedron Lett. 1985, 26, 2873 – 2876;
dc.identifier.citedreferenceR. Fernández, E. Martín-Zamora, C. Pareja, J. Vázquez, E. Díez, A. Monge, J. M. Lassaletta, Angew. Chem. Int. Ed. 1998, 37, 3428 – 3430; Angew. Chem. 1998, 110, 3598 – 3600;
dc.identifier.citedreferenceT. Ito, M. Shimizu, T. Fujisawa, Tetrahedron 1998, 54, 5523 – 5530;
dc.identifier.citedreferenceY. Itoh, M. Yamanaka, K. Mikami, J. Am. Chem. Soc. 2004, 126, 13174 – 13175;
dc.identifier.citedreferenceV. Michaut, F. Metz, J.-M. Paris, J.-C. Plaquevent, J. Fluorine Chem. 2007, 128, 889 – 895;
dc.identifier.citedreferenceY. Zhao, Y. Pan, H. Liu, Y. Yang, Z. Jiang, C.-H. Tan, Chem. Eur. J. 2011, 17, 3571 – 3574.
dc.identifier.citedreference 
dc.identifier.citedreferenceZ.-M. Qiu, D. J. Burton, Tetrahedron Lett. 1994, 35, 4319 – 4322;
dc.identifier.citedreferenceL. M. Kacharova, I. I. Gerus, A. D. Kacharov, J. Fluorine Chem. 2002, 117, 193 – 197;
dc.identifier.citedreferenceS. Buscemi, A. Pace, A. Palumbo Piccionello, N. Vivona, M. Pani, Tetrahedron 2006, 62, 1158 – 1164;
dc.identifier.citedreferenceN. Zanatta, J. M. F. M. Schneider, P. H. Schneider, A. D. Wouters, H. G. Bonacorso, M. A. P. Martins, L. A. Wessjohann, J. Org. Chem. 2006, 71, 6996 – 6998;
dc.identifier.citedreferenceJ. Qian, W. Cao, H. Zhang, J. Chen, S. Zhu, J. Fluorine Chem. 2007, 128, 207 – 210;
dc.identifier.citedreferenceN. A. Tolmachova, I. I. Gerus, S. I. Vdovenko, G. Haufe, Y. A. Kirzhner, Synthesis 2007, 2007, 3797 – 3806;
dc.identifier.citedreferenceL. E. Kiss, H. S. Ferreira, D. A. Learmonth, Org. Lett. 2008, 10, 1835 – 1837;
dc.identifier.citedreferenceM. Yılmaz, Tetrahedron 2011, 67, 8255 – 8263;
dc.identifier.citedreferenceC. Christophe, B. R. Langlois, T. Billard, J. Fluorine Chem. 2013, 155, 118 – 123;
dc.identifier.citedreferenceB.-C. Zhao, Q.-Z. Zhang, W.-Y. Zhou, H.-C. Tao, Z.-G. Li, RSC Adv. 2013, 3, 13106 – 13109.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. T. Welch, Tetrahedron 1987, 43, 3123 – 3197;
dc.identifier.citedreferenceG. B. Dreyer, B. W. Metcalf, Tetrahedron Lett. 1988, 29, 6885 – 6888;
dc.identifier.citedreferenceM. E. Pierce, R. L. Parsons, L. A. Radesca, Y. S. Lo, S. Silverman, J. R. Moore, Q. Islam, A. Choudhury, J. M. D. Fortunak, D. Nguyen, C. Luo, S. J. Morgan, W. P. Davis, P. N. Confalone, C.-y. Chen, R. D. Tillyer, L. Frey, L. Tan, F. Xu, D. Zhao, A. S. Thompson, E. G. Corley, E. J. J. Grabowski, R. Reamer, P. J. Reider, J. Org. Chem. 1998, 63, 8536 – 8543;
dc.identifier.citedreferenceF. Benayoud, A. Abouabdellah, C. Richard, D. Bonnet-Delpon, J.-P. Bégué, D. Levasseur, O. Boutaud, F. Schuber, Tetrahedron Lett. 2000, 41, 6367 – 6370;
dc.identifier.citedreferenceF. Grellepois, F. Chorki, B. Crousse, M. Ourévitch, D. Bonnet-Delpon, J.-P. Bégué, J. Org. Chem. 2002, 67, 1253 – 1260;
dc.identifier.citedreferenceM. Abid, B. Török, Adv. Synth. Catal. 2005, 347, 1797 – 1803;
dc.identifier.citedreferenceD. Riber, M. Venkataramana, S. Sanyal, T. Duvold, J. Med. Chem. 2006, 49, 1503 – 1505;
dc.identifier.citedreferenceJ. T. Reeves, D. R. Fandrick, Z. Tan, J. J. Song, S. Rodriguez, B. Qu, S. Kim, O. Niemeier, Z. Li, D. Byrne, S. Campbell, A. Chitroda, P. DeCroos, T. Fachinger, V. Fuchs, N. C. Gonnella, N. Grinberg, N. Haddad, B. Jäger, H. Lee, J. C. Lorenz, S. Ma, B. A. Narayanan, L. J. Nummy, A. Premasiri, F. Roschangar, M. Sarvestani, S. Shen, E. Spinelli, X. Sun, R. J. Varsolona, N. Yee, M. Brenner, C. H. Senanayake, J. Org. Chem. 2013, 78, 3616 – 3635.
dc.identifier.citedreferenceR. J. Baker, T. McCabe, J. E. O’Brien, H. V. Ogilvie, J. Fluorine Chem. 2010, 131, 621 – 626.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. Mello, M. Fiorentino, C. Fusco, R. Curci, J. Am. Chem. Soc. 1989, 111, 6749 – 6757;
dc.identifier.citedreferenceA. Armstrong, B. R. Hayter, Chem. Commun. 1998, 621 – 622;
dc.identifier.citedreferenceD. Yang, Y.-C. Yip, J. Chen, K.-K. Cheung, J. Am. Chem. Soc. 1998, 120, 7659 – 7660;
dc.identifier.citedreferenceA. Armstrong, G. Ahmed, B. Dominguez-Fernandez, B. R. Hayter, J. S. Wailes, J. Org. Chem. 2002, 67, 8610 – 8617;
dc.identifier.citedreferenceS. E. Denmark, H. Matsuhashi, J. Org. Chem. 2002, 67, 3479 – 3486;
dc.identifier.citedreferenceC. J. Stearman, V. Behar, Tetrahedron Lett. 2002, 43, 1943 – 1946;
dc.identifier.citedreferenceA. Solladié-Cavallo, L. Jierry, A. Klein, M. Schmitt, R. Welter, Tetrahedron: Asymmetry 2004, 15, 3891 – 3898.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. J. Burton, Z.-Y. Yang, Tetrahedron 1992, 48, 189 – 275;
dc.identifier.citedreferenceM. Yoshida, D. Suzuki, M. Iyoda, J. Chem. Soc. Perkin Trans. 1 1997, 643 – 648;
dc.identifier.citedreferenceR. Kakino, I. Shimizu, A. Yamamoto, Bull. Chem. Soc. Jpn. 2001, 74, 371 – 376;
dc.identifier.citedreferenceC. G. Kokotos, C. Baskakis, G. Kokotos, J. Org. Chem. 2008, 73, 8623 – 8626;
dc.identifier.citedreferenceD. Yang, Y. Zhou, N. Xue, J. Qu, J. Org. Chem. 2013, 78, 4171 – 4176;
dc.identifier.citedreferenceD. M. Rudzinski, C. B. Kelly, N. E. Leadbeater, Chem. Commun. 2012, 48, 9610 – 9612.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. J. Linderman, D. M. Graves, Tetrahedron Lett. 1987, 28, 4259 – 4262;
dc.identifier.citedreferenceR. J. Linderman, D. M. Graves, J. Org. Chem. 1989, 54, 661 – 668;
dc.identifier.citedreferenceV. Kesavan, D. Bonnet-Delpon, J. P. Begue, A. Srikanth, S. Chandrasekaran, Tetrahedron Lett. 2000, 41, 3327 – 3330;
dc.identifier.citedreferenceC. B. Kelly, M. A. Mercadante, T. A. Hamlin, M. H. Fletcher, N. E. Leadbeater, J. Org. Chem. 2012, 77, 8131 – 8141;
dc.identifier.citedreferenceY. Tanaka, T. Ishihara, T. Konno, J. Fluorine Chem. 2012, 137, 99 – 104;
dc.identifier.citedreferenceH. Cheng, Y. Pei, F. Leng, J. Li, A. Liang, D. Zou, Y. Wu, Y. Wu, Tetrahedron Lett. 2013, 54, 4483 – 4486;
dc.identifier.citedreferenceY. Kadoh, M. Tashiro, K. Oisaki, M. Kanai, Adv. Synth. Catal. 2015, 357, 2193 – 2198.
dc.identifier.citedreference 
dc.identifier.citedreferenceP. M. Pihko, Angew. Chem. Int. Ed. 2006, 45, 544 – 547; Angew. Chem. 2006, 118, 558 – 561;
dc.identifier.citedreferenceP. V. Pham, D. A. Nagib, D. W. C. MacMillan, Angew. Chem. Int. Ed. 2011, 50, 6119 – 6122; Angew. Chem. 2011, 123, 6243 – 6246;
dc.identifier.citedreferenceP. Novák, A. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc. 2012, 134, 16167 – 16170;
dc.identifier.citedreferenceT. Kitamura, K. Muta, K. Muta, J. Org. Chem. 2014, 79, 5842 – 5846;
dc.identifier.citedreferenceY. Wang, Y. You, Z. Weng, J. Fluorine Chem. 2015, 175, 51 – 59.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ.-P. Bégué, D. Mesureur, Synthesis 1989, 309 – 312;
dc.identifier.citedreferenceA. Thenappan, D. J. Burton, J. Org. Chem. 1991, 56, 273 – 277;
dc.identifier.citedreferenceJ. P. Begue, D. Bonnetdelpon, D. Mesureur, G. Nee, S. W. Wu, J. Org. Chem. 1992, 57, 3807 – 3814.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Keumi, M. Shimada, M. Takahashi, H. Kitajima, Chem. Lett. 1990, 783 – 786;
dc.identifier.citedreferenceM. Hojo, R. Masuda, S. Sakaguchi, M. Takagawa, Synthesis 1986, 1016 – 1017.
dc.identifier.citedreference 
dc.identifier.citedreferenceB. W. Metcalf, E. T. Jarvi, J. P. Burkhart, Tetrahedron Lett. 1985, 26, 2861 – 2864;
dc.identifier.citedreferenceE. Bélanger, C. Houze, N. Guimond, K. Cantin, J.-F. Paquin, Chem. Commun. 2008, 3251 – 3253;
dc.identifier.citedreferenceT. Luo, R. Zhang, W. Zhang, X. Shen, T. Umemoto, J. Hu, Org. Lett. 2014, 16, 888 – 891;
dc.identifier.citedreferenceT.-P. Yang, Q. Li, J.-H. Lin, J.-C. Xiao, Chem. Commun. 2014, 50, 1077 – 1079;
dc.identifier.citedreferenceM. D. Kosobokov, V. V. Levin, M. I. Struchkova, A. D. Dilman, Org. Lett. 2015, 17, 760 – 763;
dc.identifier.citedreferenceX. Song, J. Chang, D. Zhu, J. Li, C. Xu, Q. Liu, M. Wang, Org. Lett. 2015, 17, 1712 – 1715;
dc.identifier.citedreferenceT. Luo, R. Zhang, X. Shen, W. Zhang, C. Ni, J. Hu, Dalton Trans. 2015, 44, 19636 – 19641.
dc.identifier.citedreferenceW. Wang, J. Jasinski, G. B. Hammond, B. Xu, Angew. Chem. Int. Ed. 2010, 49, 7247 – 7252; Angew. Chem. 2010, 122, 7405 – 7410;
dc.identifier.citedreferenceA. Deb, S. Manna, A. Modak, T. Patra, S. Maity, D. Maiti, Angew. Chem. Int. Ed. 2013, 52, 9747 – 9750; Angew. Chem. 2013, 125, 9929 – 9932;
dc.identifier.citedreferenceZ. He, R. Zhang, M. Hu, L. Li, C. Ni, J. Hu, Chem. Sci. 2013, 4, 3478 – 3483;
dc.identifier.citedreferenceL. Li, Q.-Y. Chen, Y. Guo, J. Org. Chem. 2014, 79, 5145 – 5152.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. K. S. Prakash, A. K. Yudin, Chem. Rev. 1997, 97, 757 – 786;
dc.identifier.citedreferenceR. P. Singh, R. L. Kirchmeier, J. M. Shreeve, Org. Lett. 1999, 1, 1047 – 1049;
dc.identifier.citedreferenceT. Billard, S. Bruns, B. R. Langlois, Org. Lett. 2000, 2, 2101 – 2103;
dc.identifier.citedreferenceS. Mizuta, N. Shibata, T. Sato, H. Fujimoto, S. Nakamura, T. Toru, Synlett 2006, 267 – 270;
dc.identifier.citedreferenceT. Billard, B. R. Langlois, Eur. J. Org. Chem. 2007, 891 – 897;
dc.identifier.citedreferenceJ. A. Ma, D. Cahard, Chem. Rev. 2008, 108, PR 1 –PR 43;
dc.identifier.citedreferenceN. Shibata, S. Mizuta, H. Kawai, Tetrahedron: Asymmetry 2008, 19, 2633 – 2644;
dc.identifier.citedreferenceT. Besset, T. Poisson, X. Pannecoucke, J. Fluorine Chem. 2015, 178, 225 – 240.
dc.identifier.citedreferenceFor 1,4-nucleophilic trifluoromethylation of special substrates, see:
dc.identifier.citedreferenceD. V. Sevenard, V. Y. Sosnovskikh, A. A. Kolomeitsev, M. H. Konigsmann, G. V. Roschenthaler, Tetrahedron Lett. 2003, 44, 7623 – 7627;
dc.identifier.citedreferenceV. Y. Sosnovskikh, B. I. Usachev, D. V. Sevenard, G. V. Roschenthaler, J. Org. Chem. 2003, 68, 7747 – 7754;
dc.identifier.citedreferenceC.-L. Wang, H.-Q. Li, W.-D. Meng, F.-L. Qing, Bioorg. Med. Chem. Lett. 2005, 15, 4456 – 4458;
dc.identifier.citedreferenceA. D. Dilman, V. V. Levin, P. A. Belyakov, M. I. Struchkova, V. A. Tartakovsky, Tetrahedron Lett. 2008, 49, 4352 – 4354;
dc.identifier.citedreferenceA. A. Zemtsov, V. V. Levin, A. D. Dilman, M. I. Struchkova, P. A. Belyakov, V. A. Tartakovsky, Tetrahedron Lett. 2009, 50, 2998 – 3000; for directing-group-assisted copper-catalyzed trifluoromethylation of α,β-unsaturated amides, see:
dc.identifier.citedreferenceC. Feng, T.-P. Loh, Angew. Chem. Int. Ed. 2013, 52, 12414 – 12417; Angew. Chem. 2013, 125, 12640 – 12643.
dc.identifier.citedreferenceS. Okusu, Y. Sugita, E. Tokunaga, N. Shibata, Beilstein J. Org. Chem. 2013, 9, 2189 – 2193.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. J. Snape, Chem. Soc. Rev. 2007, 36, 1823 – 1842;
dc.identifier.citedreferenceF. Kleinbeck, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 9178 – 9179;
dc.identifier.citedreferenceZ.-M. Chen, Q.-W. Zhang, Z.-H. Chen, H. Li, Y.-Q. Tu, F.-M. Zhang, J.-M. Tian, J. Am. Chem. Soc. 2011, 133, 8818 – 8821;
dc.identifier.citedreferenceB. Wang, Y. Tu, Acc. Chem. Res. 2011, 44, 1207 – 1222;
dc.identifier.citedreferenceZ. Chai, T. J. Rainey, J. Am. Chem. Soc. 2012, 134, 3615 – 3618.
dc.identifier.citedreferenceFor reviews of aromatic C−C ipso -substitution reactions, see:
dc.identifier.citedreferenceA. Studer, M. Bossart, Tetrahedron 2001, 57, 9649 – 9667;
dc.identifier.citedreferenceS. M. Bonesi, M. Fagnoni, Chem. Eur. J. 2010, 16, 13572 – 13589; for selectivity of neophyl rearrangement, see:
dc.identifier.citedreferenceC. S. Aureliano Antunes, M. Bietti, G. Ercolani, O. Lanzalunga, M. Salamone, J. Org. Chem. 2005, 70, 3884 – 3891.
dc.identifier.citedreferenceFor selectivity of semipinacol rearrangement, see: L. Li, P. Cai, Q. Guo, S. Xue, J. Org. Chem. 2008, 73, 3516 – 3522.
dc.identifier.citedreference 
dc.identifier.citedreferenceX. Liu, F. Xiong, X. Huang, L. Xu, P. Li, X. Wu, Angew. Chem. Int. Ed. 2013, 52, 6962 – 6966; Angew. Chem. 2013, 125, 7100 – 7104;
dc.identifier.citedreferenceZ.-M. Chen, W. Bai, S.-H. Wang, B.-M. Yang, Y.-Q. Tu, F.-M. Zhang, Angew. Chem. Int. Ed. 2013, 52, 9781 – 9785; Angew. Chem. 2013, 125, 9963 – 9967.
dc.identifier.citedreferenceOther similar examples of trifluoromethylation-initiated 1,2-migration of allylic alcohols, see:
dc.identifier.citedreferenceH. Egami, R. Shimizu, Y. Usui, M. Sodeoka, Chem. Commun. 2013, 49, 7346 – 7348;
dc.identifier.citedreferenceH.-L. Huang, H. Yan, G.-L. Gao, C. Yang, W. Xia, Asian J. Org. Chem. 2015, 4, 674 – 677;
dc.identifier.citedreferenceS. B. Woo, D. Y. Kim, J. Fluorine Chem. 2015, 178, 214 – 218.
dc.identifier.citedreferenceFor selected examples, see:
dc.identifier.citedreferenceR. D. Chambers, M. Parsons, S. A. Graham, R. Bowden, Chem. Commun. 2000, 959 – 960;
dc.identifier.citedreferenceA. Wolan, Y. Six, Tetrahedron 2010, 66, 15 – 61.
dc.identifier.citedreferenceJ. A. Miller, G. M. Ullah, G. M. Welsh, P. Mallon, Tetrahedron Lett. 2001, 42, 2729 – 2731.
dc.identifier.citedreferenceM. Wang, B. M. Wang, L. Shi, Y. Q. Tu, C.-A. Fan, S. H. Wang, X. D. Hu, S. Y. Zhang, Chem. Commun. 2005, 5580 – 5582.
dc.identifier.citedreferenceZ.-M. Chen, B.-M. Yang, Z.-H. Chen, Q.-W. Zhang, M. Wang, Y.-Q. Tu, Chem. Eur. J. 2012, 18, 12950 – 12954.
dc.identifier.citedreference 
dc.identifier.citedreferenceQ.-Y. Chen, S.-W. Wu, J. Chem. Soc. Chem. Commun. 1989, 705 – 706;
dc.identifier.citedreferenceQ.-Y. Chen, G.-Y. Yang, S.-W. Wu, J. Fluorine Chem. 1991, 55, 291 – 298;
dc.identifier.citedreferenceD.-B. Su, J.-X. Duan, Q.-Y. Chen, Tetrahedron Lett. 1991, 32, 1541;
dc.identifier.citedreferenceM. Huiban, M. Tredwell, S. Mizuta, Z. Wan, X. Zhang, T. L. Collier, V. Gouverneur, J. Passchier, Nat. Chem. 2013, 5, 941 – 944.
dc.identifier.citedreferenceB. Gao, Y. Zhao, J. Hu, Angew. Chem. Int. Ed. 2015, 54, 638 – 642; Angew. Chem. 2015, 127, 648 – 652.
dc.identifier.citedreferenceB. Gao, Y. Zhao, C. Ni, J. Hu, Org. Lett. 2014, 16, 102 – 105.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. Zhang, Y. Peng, L. Cui, L. Zhang, Angew. Chem. Int. Ed. 2009, 48, 3112 – 3115; Angew. Chem. 2009, 121, 3158 – 3161;
dc.identifier.citedreferenceB. S. L. Collins, M. G. Suero, M. J. Gaunt, Angew. Chem. Int. Ed. 2013, 52, 5799 – 5802; Angew. Chem. 2013, 125, 5911 – 5914;
dc.identifier.citedreferenceM. Yu, G. Zhang, L. Zhang, Org. Lett. 2007, 9, 2147 – 2150;
dc.identifier.citedreferenceT. de Haro, C. Nevado, Chem. Commun. 2011, 47, 248 – 249.
dc.identifier.citedreferenceY.-P. Xiong, M.-Y. Wu, X.-Y. Zhang, C.-L. Ma, L. Huang, L.-J. Zhao, B. Tan, X.-Y. Liu, Org. Lett. 2014, 16, 1000 – 1003.
dc.identifier.citedreferenceS. Park, J. M. Joo, E. J. Cho, Eur. J. Org. Chem. 2015, 2015, 4093 – 4097.
dc.identifier.citedreferenceFor reviews, see:
dc.identifier.citedreferenceM. G. Campbell, T. Ritter, Chem. Rev. 2015, 115, 612 – 633;
dc.identifier.citedreferenceY. Li, Y. Wu, G.-S. Li, X.-S. Wang, Adv. Synth. Catal. 2014, 356, 1412 – 1418.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. J. Barker, D. L. Boger, J. Am. Chem. Soc. 2012, 134, 13588 – 13591;
dc.identifier.citedreferenceZ. Li, L. Song, C. Li, J. Am. Chem. Soc. 2013, 135, 4640 – 4643;
dc.identifier.citedreferenceH. Shigehisa, E. Nishi, M. Fujisawa, K. Hiroya, Org. Lett. 2013, 15, 5158 – 5161;
dc.identifier.citedreferenceC. Zhang, Z. Li, L. Zhu, L. Yu, Z. Wang, C. Li, J. Am. Chem. Soc. 2013, 135, 14082 – 14085;
dc.identifier.citedreferenceZ. Li, C. Zhang, L. Zhu, C. Liu, C. Li, Org. Chem. Front. 2014, 1, 100 – 104;
dc.identifier.citedreferenceS. Mizuta, I. S. R. Stenhagen, M. O’Duill, J. Wolstenhulme, A. K. Kirjavainen, S. J. Forsback, M. Tredwell, G. Sandford, P. R. Moore, M. Huiban, S. K. Luthra, J. Passchier, O. Solin, V. Gouverneur, Org. Lett. 2013, 15, 2648 – 2651;
dc.identifier.citedreferenceJ. C. T. Leung, C. Chatalova-Sazepin, J. G. West, M. Rueda-Becerril, J. F. Paquin, G. M. Sammis, Angew. Chem. Int. Ed. 2012, 51, 10804 – 10807; Angew. Chem. 2012, 124, 10962 – 10965;
dc.identifier.citedreferenceM. Rueda-Becerril, O. Mahe, M. Drouin, M. B. Majewski, J. G. West, M. O. Wolf, G. M. Sammis, J. F. Paquin, J. Am. Chem. Soc. 2014, 136, 2637 – 2641;
dc.identifier.citedreferenceS. Bloom, C. R. Pitts, D. C. Miller, N. Haselton, M. G. Holl, E. Urheim, T. Lectka, Angew. Chem. Int. Ed. 2012, 51, 10580 – 10583; Angew. Chem. 2012, 124, 10732 – 10735;
dc.identifier.citedreferenceW. Liu, J. T. Groves, Angew. Chem. Int. Ed. 2013, 52, 6024 – 6027; Angew. Chem. 2013, 125, 6140 – 6143;
dc.identifier.citedreferenceJ.-B. Xia, C. Zhu, C. Chen, J. Am. Chem. Soc. 2013, 135, 17494 – 17500.
dc.identifier.citedreferenceH. Wang, L.-N. Guo, X.-H. Duan, Chem. Commun. 2014, 50, 7382 – 7384.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. M. Anderson, J. K. Kochi, J. Am. Chem. Soc. 1970, 92, 1651 – 1659;
dc.identifier.citedreferenceJ. M. Anderson, J. K. Kochi, J. Org. Chem. 1970, 35, 986 – 989.
dc.identifier.citedreferenceF. Yin, Z. Wang, Z. Li, C. Li, J. Am. Chem. Soc. 2012, 134, 10401 – 10404.
dc.identifier.citedreferenceL. Zhu, H. Chen, Z. Wang, C. Li, Org. Chem. Front. 2014, 1, 1299 – 1305.
dc.identifier.citedreferenceB. Schweitzer-Chaput, J. Demaerel, H. Engler, M. Klussmann, Angew. Chem. Int. Ed. 2014, 53, 8737 – 8740; Angew. Chem. 2014, 126, 8882 – 8885.
dc.identifier.citedreference 
dc.identifier.citedreferenceO. G. Kulinkovich, A. de Meijere, Chem. Rev. 2000, 100, 2789 – 2834;
dc.identifier.citedreferenceO. G. Kulinkovich, Chem. Rev. 2003, 103, 2597 – 2632;
dc.identifier.citedreference 
dc.identifier.citedreferenceP. P. Das, K. Belmore, J. K. Cha, Angew. Chem. Int. Ed. 2012, 51, 9517 – 9520; Angew. Chem. 2012, 124, 9655 – 9658;
dc.identifier.citedreferenceD. Rosa, A. Orellana, Chem. Commun. 2013, 49, 5420 – 5422.
dc.identifier.citedreference 
dc.identifier.citedreferenceY.-F. Wang, S. Chiba, J. Am. Chem. Soc. 2009, 131, 12570 – 12572;
dc.identifier.citedreferenceA. Ilangovan, S. Saravanakumar, S. Malayappasamy, Org. Lett. 2013, 15, 4968 – 4971;
dc.identifier.citedreferenceS. Chiba, Z. Y. Cao, S. A. A. El Bialy, K. Narasaka, Chem. Lett. 2006, 35, 18 – 19.
dc.identifier.citedreferenceJ. Jiao, L. X. Nguyen, D. R. Patterson, R. A. Flowers, Org. Lett. 2007, 9, 1323 – 1326.
dc.identifier.citedreferenceH. Zhao, X. Fan, J. Yu, C. Zhu, J. Am. Chem. Soc. 2015, 137, 3490 – 3493.
dc.identifier.citedreferenceN. Ishida, S. Okumura, Y. Nakanishi, M. Murakami, Chem. Lett. 2015, 44, 821 – 823.
dc.identifier.citedreferenceS. Bloom, D. D. Bume, C. R. Pitts, T. Lectka, Chem. Eur. J. 2015, 21, 8060 – 8063.
dc.identifier.citedreferenceS. Ren, C. Feng, T.-P. Loh, Org. Biomol. Chem. 2015, 13, 5105 – 5109.
dc.identifier.citedreferenceY. Li, Z. Ye, T. M. Bellman, T. Chi, M. Dai, Org. Lett. 2015, 17, 2186 – 2189.
dc.identifier.citedreferenceD. G. Kananovich, Y. A. Konik, D. M. Zubrytski, I. Jarving, M. Lopp, Chem. Commun. 2015, 51, 8349 – 8352.
dc.identifier.citedreferenceX.-P. He, Y.-J. Shu, J.-J. Dai, W.-M. Zhang, Y.-S. Feng, H.-J. Xu, Org. Biomol. Chem. 2015, 13, 7159 – 7163.
dc.identifier.citedreferenceD. H. Gibson, C. H. Depuy, Chem. Rev. 1974, 74, 605 – 623.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.