Show simple item record

Supramolecular Porphyrin‐Based Metal–Organic Frameworks with Fullerenes: Crystal Structures and Preferential Intercalation of C70

dc.contributor.authorOhmura, Tetsushi
dc.contributor.authorUsuki, Arimitsu
dc.contributor.authorMukae, Yusuke
dc.contributor.authorMotegi, Hirofumi
dc.contributor.authorKajiya, Shuji
dc.contributor.authorYamamoto, Masami
dc.contributor.authorSenda, Shunsuke
dc.contributor.authorMatsumoto, Tsuyoshi
dc.contributor.authorTatsumi, Kazuyuki
dc.date.accessioned2017-06-16T20:09:12Z
dc.date.available2017-06-16T20:09:12Z
dc.date.issued2016-03-04
dc.identifier.citationOhmura, Tetsushi; Usuki, Arimitsu; Mukae, Yusuke; Motegi, Hirofumi; Kajiya, Shuji; Yamamoto, Masami; Senda, Shunsuke; Matsumoto, Tsuyoshi; Tatsumi, Kazuyuki (2016). "Supramolecular Porphyrin‐Based Metal–Organic Frameworks with Fullerenes: Crystal Structures and Preferential Intercalation of C70." Chemistry – An Asian Journal 11(5): 700-704.
dc.identifier.issn1861-4728
dc.identifier.issn1861-471X
dc.identifier.urihttps://hdl.handle.net/2027.42/137276
dc.description.abstractThe syntheses and characterization of two new porphyrin‐based metal–organic frameworks (P‐MOFs), through the complexation of 5,10,15,20‐tetra‐4‐pyridyl‐21 H,23 H‐porphine (H2TPyP) and copper(II) acetate (CuAcO) in the presence of the fullerenes C60 or C70 are reported. Complex 1 was synthesized in conjunction with C60, and this reaction produced a two‐dimensional (2D) porous structure with the composition CuAcO‐CuTPyP⊃m‐dichlorobenzene (m‐DCB), in which C60 molecules were not intercalated. Complex 2 was synthesized in the presence of C70, generating a three‐dimensional (3D) porous structure, in which C70 was intercalated, with the composition CuAcO‐CuTPyP⋅C70⊃m‐DCB⋅CHCl3. The structures of these materials were determined by X‐ray diffraction to identify the supramolecular interactions that lead to 2D and 3D crystal packing motifs. When a combination of C60 and C70 was employed, C70 was found to be preferentially intercalated between the porphyrins.How Porefessional: Solutions of copper(II) acetate (CuAcO), 5,10,15,20‐tetra‐4‐pyridyl‐21 H,23H‐porphine (H2TPyP), and fullerenes C70 or C60 produce crystalline precipitates with the compositions CuAcO‐CuTPyP⊃m‐dichlorobenzene (m‐DCB) (1) and CuAcO‐CuTPyP⋅C70⊃m‐DCB⋅CHCl3 (2). The structures of these materials have been determined by X‐ray diffraction to identify the supramolecular interactions that lead to two‐ and three‐dimensional crystal packing motifs. Complexation in the presence of both C60 and C70 leads to preferential intercalation of C70 between the porphyrins.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfullerenes
dc.subject.otherintercalation
dc.subject.othermetal–organic frameworks
dc.subject.otherporphyrins
dc.subject.othersupramolecular chemistry
dc.titleSupramolecular Porphyrin‐Based Metal–Organic Frameworks with Fullerenes: Crystal Structures and Preferential Intercalation of C70
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137276/1/asia201501422-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137276/2/asia201501422.pdf
dc.identifier.doi10.1002/asia.201501422
dc.identifier.sourceChemistry – An Asian Journal
dc.identifier.citedreferenceD. W. Smithenry, S. R. Wilson, K. S. Suslick, Inorg. Chem. 2003, 42, 7719 – 7721;
dc.identifier.citedreference 
dc.identifier.citedreferenceH. Nobukuni, Y. Shimazaki, F. Tani, Y. Naruta, Angew. Chem. Int. Ed. 2007, 46, 8975 – 8978; Angew. Chem. 2007, 119, 9133 – 9136;
dc.identifier.citedreferenceH. Nobukuni, T. Kamimura, H. Uno, Y. Shimazaki, Y. Naruta, F. Tani, Bull. Chem. Soc. Jpn. 2011, 84, 1321 – 1328.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. Nukada, W. Mori, S. Takamizawa, M. Mikuriya, M. Handa, H. Naono, Chem. Lett. 1999, 28, 367 – 368;
dc.identifier.citedreferenceH. Chung, P. M. Barron, R. W. Novotny, H.-T. Son, C. Hu, W. Choe, Cryst. Growth Des. 2009, 9, 3327 – 3332;
dc.identifier.citedreferenceM.-H. Xie, X.-L. Yang, Y. He, J. Zhang, B. Chen, C.-D. Wu, Chem. Eur. J. 2013, 19, 14316 – 14321.
dc.identifier.citedreference 
dc.identifier.citedreferenceN. G. Pschirer, D. M. Ciurtin, M. D. Smith, U. H. F. Bunz, H.-C. z. Loye, Angew. Chem. Int. Ed. 2002, 41, 583 – 585; Angew. Chem. 2002, 114, 603 – 605;
dc.identifier.citedreferenceC.-C. Tsai, T.-T. Luo, J.-F. Yin, H.-C. Lin, K.-L. Lu, Inorg. Chem. 2009, 48, 8650 – 8652;
dc.identifier.citedreferenceA. Aijaz, P. Lama, P. K. Bharadwaj, Inorg. Chem. 2010, 49, 5883 – 5889.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. K. Prasad, D. H. Hong, M. P. Suh, Chem. Eur. J. 2010, 16, 14043 – 14050;
dc.identifier.citedreferenceS. A. Sapchenko, D. G. Samsonenko, D. N. Dybtsev, M. S. Melgunov, V. P. Fedin, Dalton Trans. 2011, 40, 2196 – 2203;
dc.identifier.citedreferenceP.-C. Guo, T.-Y. Chen, X.-M. Ren, C. Xiao, W. Jin, Dalton Trans. 2014, 43, 6720 – 6727;
dc.identifier.citedreference 
dc.identifier.citedreferenceJ.-Y. Zheng, K. Tashiro, Y. Hirabayashi, K. Kinbara, K. Saigo, T. Aida, S. Sakamoto, K. Yamaguchi, Angew. Chem. Int. Ed. 2001, 40, 1857 – 1861; Angew. Chem. 2001, 113, 1909 – 1913;
dc.identifier.citedreferenceY. Shoji, K. Tashiro, T. Aida, J. Am. Chem. Soc. 2004, 126, 6570 – 6571;
dc.identifier.citedreferenceE. Huerta, G. A. Metselaar, A. Fragoso, E. Santos, C. Bo, J. de Mendoza, Angew. Chem. Int. Ed. 2007, 46, 202 – 205; Angew. Chem. 2007, 119, 206 – 209;
dc.identifier.citedreferenceY. Inokuma, T. Arai, M. Fujita, Nat. Chem. 2010, 2, 780 – 783;
dc.identifier.citedreferenceC. Zhang, Q. Wang, H. Long, W. Zhang, J. Am. Chem. Soc. 2011, 133, 20995 – 21001.
dc.identifier.citedreferenceM. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, R. Spagna, J. Appl. Crystallogr. 2012, 45, 357 – 361.
dc.identifier.citedreferenceG. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112 – 122.
dc.identifier.citedreferenceM. C. Burla, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl. Crystallogr. 2003, 36, 1103.
dc.identifier.citedreferenceA. L. Spek, J. Appl. Crystallogr. 2003, 36, 7 – 13.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. Mori, T. Sato, C. N. Cato, T. Takei, T. Ohmura, Chem. Rec. 2005, 5, 336 – 351;
dc.identifier.citedreferenceG. A. Popovich, A. V. Ablov, G. A. Kiosse, I. I. Zheru, J. Struct. Chem. 1972, 12, 749 – 752;
dc.identifier.citedreferenceO. Kristiansson, L.-E. Tergenius, J. Chem. Soc. Dalton Trans. 2001, 1415 – 1420;
dc.identifier.citedreferenceF. D. Cukiernik, M. I. Elhaj, Z. D. Chaia, J.-C. Marchon, A.-M. G. -Godquin, D. Guillon, A. Skoulios, P. Maldivi, Chem. Mater. 1998, 10, 83 – 91;
dc.identifier.citedreferenceO. Asai, M. Kishita, M. Kubo, J. Phys. Chem. 1959, 63, 96 – 99;
dc.identifier.citedreferenceW. Mori, F. Inoue, K. Yoshida, H. Nakayama, S. Takamizawa, M. Kishita, Chem. Lett. 1997, 26, 1219 – 1220;
dc.identifier.citedreferenceH. Li, M. Eddaoudi, T. L. Groy, O. M. Yaghi, J. Am. Chem. Soc. 1998, 120, 8571 – 8572;
dc.identifier.citedreferenceS. R. Batten, B. F. Hoskins, B. Moubaraki, K. S. Murray, R. Robson, Chem. Commun. 2000, 1095 – 1096;
dc.identifier.citedreferenceS. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148 – 1150.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. Mori, H. Hoshino, Y. Nishimoto, S. Takamizawa, Chem. Lett. 1999, 28, 331 —332;
dc.identifier.citedreferenceX.-M. Lin, T.-T. Li, L.-F. Chen, L. Zhang, C.-Y. Su, Dalton Trans. 2012, 41, 10422 – 10429.
dc.identifier.citedreferenceG. S. Papaefstathiou, L. R. MacGillivray, Angew. Chem. Int. Ed. 2002, 41, 2070 – 2073; Angew. Chem. 2002, 114, 2174 – 2177;
dc.identifier.citedreferenceT. J. Prior, D. Bradshaw, S. J. Teat, M. J. Rosseinsky, Chem. Commun. 2003, 500 – 501;
dc.identifier.citedreferenceD. N. Dybtsev, H. Chun, K. Kim, Angew. Chem. Int. Ed. 2004, 43, 5033 – 5036; Angew. Chem. 2004, 116, 5143 – 5146.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. V. K. Sharma, G. A. Broker, J. G. Huddleston, J. W. Baldwin, R. M. Metzger, R. D. Rogers, J. Am. Chem. Soc. 1999, 121, 1137 – 1144;
dc.identifier.citedreferenceL. Carlucci, G. Ciani, D. M. Proserpio, F. Porta, Angew. Chem. Int. Ed. 2003, 42, 317 – 322; Angew. Chem. 2003, 115, 331 – 336;
dc.identifier.citedreferenceL. Carlucci, G. Ciani, D. M. Proserpio, F. Porta, CrystEngComm 2005, 7, 78 – 86, and references therein;
dc.identifier.citedreferenceT. Ohmura, A. Usuki, K. Fukumori, T. Ohta, M. Ito, K. Tatsumi, Inorg. Chem. 2006, 45, 7988 – 7990;
dc.identifier.citedreferenceL. D. DeVries, W. Choe, J. Chem. Crystallogr. 2009, 39, 229 – 240, and references therein;
dc.identifier.citedreferenceR. W. Seidel, I. M. Oppel, Struct. Chem. 2009, 20, 121 – 128;
dc.identifier.citedreferenceR. W. Seidel, I. M. Oppel, CrystEngComm 2010, 12, 1051 – 1053;
dc.identifier.citedreferenceR. W. Seidel, I. M. Oppel, Z. Anorg. Allg. Chem. 2010, 636, 446 – 448.
dc.identifier.citedreferenceS. Matsunaga, N. Endo, W. Mori, Eur. J. Inorg. Chem. 2012, 4885 – 4897.
dc.identifier.citedreferenceM. E. Kosal, J.-H. Chou, S. R. Wilson, K. S. Suslick, Nat. Mater. 2002, 1, 118 – 121.
dc.identifier.citedreference 
dc.identifier.citedreferenceM.-H. Xie, X.-L. Yang, C. Zou, C.-D. Wu, Inorg. Chem. 2011, 50, 5318 – 5320;
dc.identifier.citedreferenceC. Zou, Z. Zhang, X. Xu, Q. Gong, J. Li, C.-D. Wu, J. Am. Chem. Soc. 2012, 134, 87 – 90.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Sun, F. S. Tham, C. A. Reed, P. D. W. Boyd, Proc. Natl. Acad. Sci. USA 2002, 99, 5088 – 5092;
dc.identifier.citedreferenceS. K. Taylor, G. B. Jameson, P. D. W. Boyd, Supramol. Chem. 2005, 17, 543 – 546.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. V. Konarev, I. S. Neretin, Y. L. Slovokhotov, E. I. Yudanova, N. V. Drichko, Y. M. Shul′ga, B. P. Tarasov, L. L. Gumanov, A. S. Batsanov, J. A. K. Howard, R. N. Lyubovskaya, Chem. Eur. J. 2001, 7, 2605 – 2616;
dc.identifier.citedreferenceM. M. Olmstead, D. J. Nurco, Cryst. Growth Des. 2006, 6, 109 – 113;
dc.identifier.citedreferenceA. Hosseini, M. C. Hodgson, F. S. Tham, C. A. Reed, P. D. W. Boyd, Cryst. Growth Des. 2006, 6, 397 – 403;
dc.identifier.citedreferenceP. Bhyrappa, K. Karunanithi, Inorg. Chem. 2010, 49, 8389 – 8400;
dc.identifier.citedreferenceP. Bhyrappa, U. K. Sarangi, B. Varghese, Eur. J. Inorg. Chem. 2014, 5646 – 5650.
dc.identifier.citedreferenceP. D. W. Boyd, M. C. Hodgson, C. E. F. Rickard, A. G. Oliver, L. Chaker, P. J. Brothers, R. D. Bolskar, F. S. Tham, C. A. Reed, J. Am. Chem. Soc. 1999, 121, 10487 – 10495.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.