Show simple item record

Innovations in plasma sensors

dc.contributor.authorZurbuchen, Thomas H.
dc.contributor.authorGershman, Daniel J.
dc.date.accessioned2017-06-16T20:09:28Z
dc.date.available2017-06-16T20:09:28Z
dc.date.issued2016-04
dc.identifier.citationZurbuchen, Thomas H.; Gershman, Daniel J. (2016). "Innovations in plasma sensors." Journal of Geophysical Research: Space Physics 121(4): 2891-2901.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/137290
dc.description.abstractDuring the history of space exploration, ever improving instruments have continued to enable new measurements and discoveries. Focusing on plasma sensors, we examine the processes by which such new instrument innovations have occurred over the past decades. Due to risk intolerance prevalent in many NASA space missions, innovations in plasma instrumentation occur primarily when heritage systems fail to meet science requirements, functional requirements as part of its space platform, or design constraints. We will review such innovation triggers in the context of the design literature and with the help of two case studies, the Fast Imaging Plasma Spectrometer on MErcury Surface, Space ENvironment, GEochemistry, and Ranging and the Fast Plasma Investigation on Magnetosphere Multiscale. We will then discuss the anticipated needs for new plasma instrument innovations to enable the science program of the next decade.Key PointsMost innovations in space plasma instrumentations arise from a mismatch of heritage technologiesThe detections of suprathermal and very low energy ions are innovation areas of the decadal surveyConstellations of small spacecraft enable novel and highly constrained plasma measurements
dc.publisherHarvard Business School
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetosphere
dc.subject.otherinstrumentation
dc.subject.otherinnovation
dc.subject.othersolar wind
dc.subject.otherplasma sensors
dc.titleInnovations in plasma sensors
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137290/1/jgra52503.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137290/2/jgra52503_am.pdf
dc.identifier.doi10.1002/2016JA022493
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSpace Studies Board ( 2013 ), Solar and Space Physics: A Science for a Technological Society, The National Academy Process, Washington, D. C.
dc.identifier.citedreferenceMcComas, D. J., S. J. Bame, P. Barker, W. C. Feldman, J. L. Phillips, P. Riley, and J. W. Griffee ( 1998 ), Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev., 86 ( 1/4 ), 563 – 612, doi: 10.1023/A:1005040232597.
dc.identifier.citedreferenceNASA ( 2007 ), System Engineering Handbook NASA/SP‐2007‐6105.
dc.identifier.citedreferencePaschalidis, N., N. Stamatopoulos, K. Karadamoglou, G. Kottaras, V. Paschalidis, E. Sarris, R. McNutt, D. Mitchell, and R. McEntire ( 2002 ), A CMOS time‐of‐flight system‐on‐a‐chip for spacecraft instruments, IEEE Trans. Nucl. Sci., 49 ( 3 ), 1156 – 1163, doi: 10.1109/TNS.2002.1039630.
dc.identifier.citedreferencePollock, C. J., V. N. Coffey, J. D. England, N. G. Martinez, T. E. Moore, and M. L. Adrian ( 1998 ), Thermal Electron Capped Hemisphere Spectrometer (TECHS) for ionospheric studies, in Measurement Techniques in Space Plasmas: Particles, Geophys. Monogr. Ser., vol. 102, edited by R. F. Pfaff, J. E. Borovsky and D. T. Young, AGU, Washington, D. C., doi: 10.1029/GM102p0201.
dc.identifier.citedreferencePollock, C. J., et al. ( 2016 ), Fast plasma investigation for magnetospheric multiscale, Space Sci. Rev., doi: 10.1007/s11214-016-0245-4.
dc.identifier.citedreferenceRaines, J., D. J. Gershman, J. A. Slavin, T. H. Zurbuchen, H. Korth, B. J. Anderson, and S. C. Solomon ( 2014 ), Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions, J. Geophys. Res.Space Phys., 119, 6587 – 6602, doi: 10.1002/2014JA020120.
dc.identifier.citedreferenceRogacki, S., and T. H. Zurbuchen ( 2013 ), A time digitizer for space instrumentation using a field programmable gate array, Rev. Sci. Inst., 84 ( 8 ), 083107, doi: 10.1063/1.4818965.
dc.identifier.citedreferenceScudder, J., et al. ( 1995 ), Hydra—A 3‐dimensional electron and ion hot plasma instrument for the POLAR spacecraft of the GGS mission, Space Sci. Rev., 71 ( 1–4 ), 459 – 495, doi: 10.1007/BF00751338.
dc.identifier.citedreferenceSlovic, P. ( 1987 ), Perception of risk, Science, 236 ( 4799 ), 280 – 285, doi: 10.1126/science.3563507.
dc.identifier.citedreferenceSmith, W. K., and M. L. Tushman ( 2005 ), Managing strategic contradictions: A top management model for managing innovation streams, Organ. Sci., 16 ( 5 ), 522 – 536, doi: 10.1287/orsc.1050.0134.
dc.identifier.citedreferenceSpace Studies Board ( 2015 ), The Space Science Decadal Surveys: Lessons Learned and Best Practices, The National Academy Process, Washington, D. C.
dc.identifier.citedreferenceStone, E. C., A. M. Frandsen, R. A. Mewaldt, E. R. Christian, D. Margolies, J. F. Ormes, and F. Snow ( 1998 ), The Advanced Composition Explorer, Space Sci. Rev., 86 ( 1/4 ), 1 – 22, doi: 10.1023/A:1005082526237.
dc.identifier.citedreferenceSzajnfarber, Z. ( 2014 ), Space science innovation: How mission sequencing interacts with technology policy, Space Policy, 30 ( 2 ), 83 – 90, doi: 10.1016/j.spacepol.2014.03.005.
dc.identifier.citedreferenceVaisberg, O. L., et al. ( 1997 ), Initial observations of the fine plasma structures at the flank of the magnetopause with the complex plasma analyzer SCA‐1 onboard the Interball Tail Probe, Ann. Geophys., 15 ( 5 ), 570 – 586, doi: 10.1007/s00585-997-0570-8.
dc.identifier.citedreferenceWertz, J. R., and W. J. Larson ( 1999 ), Space Mission Analysis and Design, Kluwer Acad. Press, Dordrecht, Netherlands.
dc.identifier.citedreferenceWhalen, B. A., et al. ( 1994 ), The Freja F3C Cold Plasma Analyzer, Space Sci. Rev., 70 ( 3–4 ), 541 – 561, doi: 10.1007/BF00756885.
dc.identifier.citedreferenceYoung, D. T., S. J. Bame, M. F. Thomsen, R. H. Martin, J. L. Burch, J. A. Marshall, and B. Reinhard ( 1988 ), 2pi‐radian field‐of‐view toroidal electrostatic analyzer, Rev. Sci. Instrum., 59 ( 5 ), 473 – 751, doi: 10.1063/1.1139821.
dc.identifier.citedreferenceYoung, D. T., et al. ( 2014 ), Hot plasma composition analyzer for the Magnetospheric Multiscale mission, Space Sci. Rev., doi: 10.1007/s11214-014-0119-6.
dc.identifier.citedreferenceZurbuchen, T. H., P. A. Bochsler, and F. Scholze ( 1995 ), Reflection of ultraviolet light at 121.6 nm from rough surfaces, Opt. Eng., 34 ( 05 ), 1303 – 1315, doi: 10.1117/12.199865.
dc.identifier.citedreferenceZurbuchen, T. H., G. Gloeckler, J. C. Cain, S. E. Lasley, and W. Shanks ( 1998 ), Low‐weight plasma instrument to be used in the inner heliosphere, in Missions to the Sun. II, vol. 2442, edited by C. M. Korendyke, pp. 217 – 224, SPIE, doi: 10.1117/12.330260.
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 – 556, doi: 10.1007/s11214-007-9272-5.
dc.identifier.citedreferenceAngelopoulos, V. ( 2008 ), The THEMIS mission, Space Sci. Rev., 141, 5 – 34, doi: 10.1007/s11214-008-9336-1.
dc.identifier.citedreferenceBurch, J. L., R. Goldstein, T. E. Cravens, W. C. Gibson, R. N. Lundin, C. J. Pollock, J. D. Winningham, and D. T. Young ( 2007 ), RPC‐IES: The ion and electron sensor of the Rosetta plasma consortium, Space Sci. Rev., 128, 697 – 712, doi: 10.1007/s11214-006-9002-4.
dc.identifier.citedreferenceCarlson, C. W., D. W. Curtis, G. Paschman, and W. Michael ( 1982 ), An instrument for rapidly measuring plasma distribution functions with high resolution, Adv. Space Res., 2 ( 7 ), 67 – 70, doi: 10.1016/0273-1177(82)90151-X.
dc.identifier.citedreferenceCarlson, C. W., J. P. McFadden, P. Turin, D. W. Curtis, and A. Magoncelli ( 2001 ), The electron and ion plasma experiment for FAST, Space Sci. Rev., 98 ( 1/2 ), 33 – 66.
dc.identifier.citedreferenceChristensen, C. M. ( 1997 ), The Innovator’s Dilemma, Harvard Business School, Boston, Mass.
dc.identifier.citedreferenceCsikszentmihalyi, M. ( 2013 ), Creativity: The Psychology of Discovery and Invention, Harper Collins, New York.
dc.identifier.citedreferenceFleeter, R. ( 2010 ), Low‐cost spacecraft, in Encyclopedia of Aerospace Engineering, edited by R. Blockley and W. Shyy, pp. 1 – 14, John Wiley, New York.
dc.identifier.citedreferenceFunsten, H. O., B. L. Barraclough, and D. J. McComas ( 1994 ), Interactions of slow H, H 2, and H 3 in thin carbon foils, Nucl. Instrum. Methods Phys. Res. Section B, 90 ( 1–4 ), 24 – 28, doi: 10.1016/0168-583X(94)95503-4.
dc.identifier.citedreferenceGarrick, B. J. ( 1988 ), The approach to risk analysis in three industries: Nuclear power, space systems, and chemical processes, Reliab. Eng. Syst. Safety, 23, 195.
dc.identifier.citedreferenceGershman, D. J., and T. H. Zurbuchen ( 2010 ), Modeling extreme ultraviolet suppression in electrostatic analyzers, Rev. Sci. Instrum., 81 ( 4 ), 45111 doi: 10.1063/1.3378685.
dc.identifier.citedreferenceGilbert, J. A., S. T. Lepri, E. Landi, and T. H. Zurbuchen ( 2012 ), First measurements of the complete heavy‐ion charge distributions of C, O, and Fe associated with interplanetary coronal mass ejections, Astrophys. J., 751 ( 1 ), 20, doi: 10.1088/0004-637X/751/1/20.
dc.identifier.citedreferenceGilbert, J. A., D. J. Gershman, G. Gloeckler, R. A. Lundgren, T. H. Zurbuchen, T. M. Orlando, J. McLain, and R. von Steiger ( 2014 ), Invited article: Characterization of background sources in space‐based time‐of‐flight mass spectrometers, Rev. Sci. Instrum., 85 ( 9, 091301), doi: 10.1063/1.4894694.
dc.identifier.citedreferenceGloeckler, G., et al. ( 1995 ), The solar wind and suprathermal ion composition investigation on the Wind spacecraft, Space Sci. Rev., 71 ( 1–4 ), 79 – 124, doi: 10.1007/BF00751327.
dc.identifier.citedreferenceGloeckler, G., et al. ( 1998 ), Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft, Space Sci. Rev., 86 ( 1/4 ), 497 – 539, doi: 10.1023/A:100503613689.
dc.identifier.citedreferenceHeidt, H., J. Puig‐Suari, A. S. Moore, S. Nakasuka, and R. Twiggs ( 2000 ), CubeSat: A new generation of picosatellites for education and industry low‐cost experimentation in Proc. 14 th Annual/USU Conference on Small Satellites, SSC00‐V‐5.
dc.identifier.citedreferenceJohnson, S. ( 2010 ), Where Good Ideas Come From, Riverhead Books, New York.
dc.identifier.citedreferenceMacDonald, E. A., K. A. Lynch, M. Widholm, R. Arnoldy, P. M. Kintner, E. M. Klatt, M. Samara, J. LaBelle, and G. Lapenta ( 2006 ), In situ measurements of thermal electrons on the SIERRA nightside auroral sounding rocket, J. Geophys. Res., 111, A12310, doi: 10.1029/2005JA011493.
dc.identifier.citedreferenceMarch, J. G. ( 1991 ), Exploration and exploitation in organizational learning, Organ. Sci., 2 ( 1 ), 71 – 87, doi: 10.1287/orsc.2.1.71.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.