Show simple item record

Martian high‐altitude photoelectrons independent of solar zenith angle

dc.contributor.authorXu, Shaosui
dc.contributor.authorLiemohn, Michael
dc.contributor.authorBougher, Stephen
dc.contributor.authorMitchell, David
dc.date.accessioned2017-06-16T20:09:48Z
dc.date.available2017-06-16T20:09:48Z
dc.date.issued2016-04
dc.identifier.citationXu, Shaosui; Liemohn, Michael; Bougher, Stephen; Mitchell, David (2016). "Martian high‐altitude photoelectrons independent of solar zenith angle." Journal of Geophysical Research: Space Physics 121(4): 3767-3780.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/137306
dc.description.abstractMany aspects of the Martian upper atmosphere are known to vary with solar zenith angle (SZA). One would assume that dayside photoelectron fluxes are also SZA dependent, especially when transport along a semivertical magnetic field line is significant. However, our investigation presented here of the observed Martian high‐altitude (∼400 km) photoelectron fluxes by the magnetometer/electron reflectometer (MAG/ER) instruments on board Mars Global Surveyor (MGS) shows that the photoelectron fluxes are better correlated with just the solar irradiance, without SZA factored in, and also that the median photoelectron fluxes are independent of SZA, especially for high energies (above 100 eV). For lower energies (below 70 eV), the observed fluxes tend to vary to some degree with SZA. Such counterintuitive results are due to the existence of a photoelectron exobase, only above which the photoelectrons are able to transport and escape to high altitudes. Two methods are used here to determine the altitude range of this exobase, which varies between 145 km and 165 km depending on the atmosphere and SZA. Through our SuperThermal Electron Transport (STET) model, we found that the integral of the production rate above the photoelectron exobase, and therefore the high‐altitude photoelectron fluxes, is rather independent of SZA. Such an independent relationship concerns energy redistribution in the Martian upper atmosphere, using photoelectrons to map magnetic topology and connectivity, as well as ion escape. This finding can also be carefully adapted to other solar bodies with semivertical magnetic fields at ionospheric altitudes, such as Earth, Jupiter, and Saturn.Key PointsHigh‐altitude photoelectron fluxes are independent of SZA for energies above a few tens of eVSZA partially controls the low‐energy photoelectron fluxesOur simulations show that the photoelectron exobase is around 145–165 km
dc.publisherCambridge Univ. Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSolar zenith angle
dc.subject.otherPhotoelectrons
dc.subject.otherMars
dc.subject.otherionosphere
dc.subject.othersuperthermal electron transport
dc.titleMartian high‐altitude photoelectrons independent of solar zenith angle
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137306/1/jgra52544_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137306/2/jgra52544.pdf
dc.identifier.doi10.1002/2015JA022149
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceMorgan, D. D., D. A. Gurnett, D. L. Kirchner, J. L. Fox, E. Nielsen, and J. J. Plaut ( 2008 ), Variation of the Martian ionospheric electron density from Mars Express radar soundings, J. Geophys. Res., 113, A09303, doi: 10.1029/2008JA013313.
dc.identifier.citedreferenceLiemohn, M. W., A. Dupre, S. W. Bougher, M. Trantham, D. L. Mitchell, and M. D. Smith ( 2012 ), Time‐history influence of global dust storms on the upper atmosphere at Mars, Geophys. Res. Lett., 39, L11201, doi: 10.1029/2012GL051994.
dc.identifier.citedreferenceLillis, R. J., and D. A. Brain ( 2013 ), Nightside electron precipitation at Mars: Geographic variability and dependence on solar wind conditions, J. Geophys. Res. Space Physics, 118, 3546 – 3556, doi: 10.1002/jgra.50171.
dc.identifier.citedreferenceLillis, R. J., and X. Fang ( 2015 ), Electron impact ionization in the Martian atmosphere: Interplay between scattering and crustal magnetic field effects, J. Geophys. Res. Planets, 120, 1332 – 1345, doi: 10.1002/2015JE004841.
dc.identifier.citedreferenceLillis, R. J., D. L. Mitchell, R. P. Lin, and M. H. Acuña ( 2008 ), Electron reflectometry in the Martian atmosphere, Icarus, 194, 544 – 561, doi: 10.1016/j.icarus.2007.09.030.
dc.identifier.citedreferenceLillis, R. J., D. A. Brain, S. L. England, P. Withers, M. O. Fillingim, and A. Safaeinili ( 2010 ), Total electron content in the Mars ionosphere: Temporal studies and dependence on solar EUV flux, J. Geophys. Res., 115, A11314, doi: 10.1029/2010JA015698.
dc.identifier.citedreferenceMantas, G. P., and W. B. Hanson ( 1979 ), Photoelectron fluxes in the Martian ionosphere, J. Geophys. Res., 84 ( A2 ), 369 – 385, doi: 10.1029/JA084iA02p00369.
dc.identifier.citedreferenceMitchell, D., R. Lin, C. Mazelle, H. Reme, P. Cloutier, J. Connerney, M. Acuña, and N. Ness ( 2001 ), Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer, J. Geophys. Res., 106 ( E10 ), 23,419 – 23,427.
dc.identifier.citedreferenceNielsen, E., et al. ( 2007 ), Local plasma processes and enhanced electron densities in the lower ionosphere in magnetic cusp regions on Mars, Planet. Space Sci., 55 ( 14 ), 2164 – 2172.
dc.identifier.citedreferenceNěmec, F., D. D. Morgan, D. A. Gurnett, F. Duru, and V. Truhlík ( 2011 ), Dayside ionosphere of Mars: Empirical model based on data from the MARSIS instrument, J. Geophys. Res., 116, E07003, doi: 10.1029/2010JE003789.
dc.identifier.citedreferencePeterson, W., D. Brain, D. Mitchell, S. Bailey, and P. Chamberlin ( 2013 ), Correlations between variations in solar EUV and soft X‐ray irradiance and photoelectron energy spectra observed on Mars and Earth, J. Geophys. Res. Space Physics, 118, 7338 – 7347, doi: 10.1002/2013JA019251.
dc.identifier.citedreferenceSafaeinili, A., W. Kofman, J. Mouginot, Y. Gim, A. Herique, A. B. Ivanov, J. J. Plaut, and G. Picardi ( 2007 ), Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes, Geophys. Res. Lett., 34, L23204, doi: 10.1029/2007GL032154.
dc.identifier.citedreferenceSchunk, R., and A. Nagy ( 2009 ), Ionospheres, Cambridge Univ. Press, Cambridge, U. K.
dc.identifier.citedreferenceSmith, F., and C. Smith ( 1972 ), Numerical evaluation of Chapman’s grazing incidence integral ch( x, χ ), J. Geophys. Res., 77 ( 19 ), 3592 – 3597.
dc.identifier.citedreferenceSung, K., and J. L. Fox ( 2000 ), Electron impact cross sections for use in modeling the ionospheres/thermospheres of the Earth and planets, Eos Trans. AGU, 81 ( 48 ), Fall Meet. Suppl., Abstract SA52A – 11.
dc.identifier.citedreferenceTrantham, M., M. Liemohn, D. Mitchell, and J. Frank ( 2011 ), Photoelectrons on closed crustal field lines at Mars, J. Geophys. Res., 116, A07311, doi: 10.1029/2010JA016231.
dc.identifier.citedreferenceWithers, P., and M. Mendillo ( 2005 ), Response of peak electron densities in the Martian ionosphere to day‐to‐day changes in solar flux due to solar rotation, Planet. Space Sci., 53, 1401 – 1418, doi: 10.1016/j.pss.2005.07.010.
dc.identifier.citedreferenceWithers, P., K. Fallows, and M. Matta ( 2014 ), Predictions of electron temperatures in the Mars ionosphere and their effects on electron densities, Geophys. Res. Lett., 41, 2681 – 2686, doi: 10.1002/2014GL059683.
dc.identifier.citedreferenceXu, S., and M. W. Liemohn ( 2015 ), Superthermal electron transport model for Mars, Earth Space Sci., 2 ( 3 ), 47 – 64, doi: 10.1002/2014EA000043.
dc.identifier.citedreferenceXu, S., M. W. Liemohn, D. L. Mitchell, and M. D. Smith ( 2014a ), Mars photoelectron energy and pitch angle dependence on intense lower atmospheric dust storms, J. Geophys. Res. Planets, 119, 1689 – 1706, doi: 10.1002/2013JE004594.
dc.identifier.citedreferenceXu, S., M. W. Liemohn, and D. L. Mitchell ( 2014b ), Solar wind electron precipitation into the dayside Martian upper atmosphere through the cusps of strong crustal fields, J. Geophys. Res. Space Physics, 119, 10,100 – 10,115, doi: 10.1002/2014JA020363.
dc.identifier.citedreferenceXu, S., M. W. Liemohn, W. Peterson, J. Fontenla, and P. Chamberlin ( 2015a ), Comparison of different solar irradiance models for the superthermal electron transport model for Mars, Planet. Space Sci., 119, 62 – 68, doi: 10.1016/j.pss.2015.09.008.
dc.identifier.citedreferenceXu, S., M. Liemohn, S. Bougher, and D. Mitchell ( 2015b ), Enhanced carbon dioxide may explain the dust‐storm‐related increase in high‐altitude photoelectron fluxes at Mars, Geophys. Res. Lett., 42, 9702 – 9710, doi: 10.1002/2015GL066043.
dc.identifier.citedreferenceZhang, M. H. G., J. G. Luhmann, and A. J. Kliore ( 1990 ), An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods, J. Geophys. Res., 95, 17,095 – 17,102, doi: 10.1029/JA095iA10p17095.
dc.identifier.citedreferenceAcuña, M., et al. ( 1992 ), Mars observer magnetic fields investigation, J. Geophys. Res., 97 ( E5 ), 7799 – 7814.
dc.identifier.citedreferenceAcuña, M., et al. ( 1998 ), Magnetic field and plasma observations at Mars: Initial results of the Mars Global Surveyor mission, Science, 279 ( 5357 ), 1676 – 1680.
dc.identifier.citedreferenceBanks, P., and A. Nagy ( 1970 ), Concerning the influence of elastic scattering upon photoelectron transport and escape, J. Geophys. Res., 75 ( 10 ), 1902 – 1910.
dc.identifier.citedreferenceBertaux, J.‐L., F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S. Stern, B. Sandel, and O. Korablev ( 2005 ), Discovery of an aurora on Mars, Nature, 435 ( 7043 ), 790 – 794.
dc.identifier.citedreferenceBougher, S. W., S. Engel, R. Roble, and B. Foster ( 1999 ), Comparative terrestrial planet thermospheres: 2. Solar cycle variation of global structure and winds at equinox, J. Geophys. Res., 104 ( E7 ), 16,591 – 16,611.
dc.identifier.citedreferenceBougher, S. W., S. Engel, R. Roble, and B. Foster ( 2000 ), Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices, J. Geophys. Res., 105 ( E7 ), 17,669 – 17,692.
dc.identifier.citedreferenceBougher, S. W., S. Engel, D. P. Hinson, and J. M. Forbes ( 2001 ), Mars Global Surveyor radio science electron density profiles: Neutral atmosphere implications, Geophys. Res. Lett., 28, 3091 – 3094, doi: 10.1029/2001GL012884.
dc.identifier.citedreferenceBougher, S. W., S. Engel, D. Hinson, and J. Murphy ( 2004 ), MGS Radio Science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere, J. Geophys. Res., 109, E03010, doi: 10.1029/2003JE002154.
dc.identifier.citedreferenceBougher, S. W., J. Bell, J. Murphy, M. Lopez‐Valverde, and P. Withers ( 2006 ), Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions, Geophys. Res. Lett., 33, L02203, doi: 10.1029/2005GL024059.
dc.identifier.citedreferenceBrain, D., F. Bagenal, M. Acuña, and J. Connerney ( 2003 ), Martian magnetic morphology: Contributions from the solar wind and crust, J. Geophys. Res., 108 ( A12 ), 1424, doi: 10.1029/2002JA009482.
dc.identifier.citedreferenceBrain, D., J. Halekas, L. Peticolas, R. Lin, J. Luhmann, D. Mitchell, G. Delory, S. Bougher, M. Acuña, and H. Rème ( 2006 ), On the origin of aurora on Mars, Geophys. Res. Lett., 33, L01201, doi: 10.1029/2005GL024782.
dc.identifier.citedreferenceBrain, D., R. Lillis, D. Mitchell, J. Halekas, and R. Lin ( 2007 ), Electron pitch angle distributions as indicators of magnetic field topology near Mars, J. Geophys. Res., 112, A09201, doi: 10.1029/2007JA012435.
dc.identifier.citedreferenceButler, D. M., and R. S. Stolarski ( 1978 ), Photoelectrons and electron temperatures in the Venus ionosphere, J. Geophys. Res., 83 ( A5 ), 2057 – 2065.
dc.identifier.citedreferenceChamberlin, P. C., T. N. Woods, and F. G. Eparvier ( 2007 ), Flare Irradiance Spectral Model (FISM): Daily component algorithms and results, Space Weather, 5, S07005, doi: 10.1029/2007SW000316.
dc.identifier.citedreferenceChamberlin, P. C., T. N. Woods, and F. G. Eparvier ( 2008 ), Flare Irradiance Spectral Model (FISM): Flare component algorithms and results, Space Weather, 6, S05001, doi: 10.1029/2007SW000372.
dc.identifier.citedreferenceChapman, S. ( 1931a ), The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth, Proc. Phys. Soc., 43, 26 – 45, doi: 10.1088/0959‐5309/43/1/305.
dc.identifier.citedreferenceChapman, S. ( 1931b ), The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth part II. Grazing incidence, Proc. Phys. Soc., 43, 483 – 501, doi: 10.1088/0959‐5309/43/5/302.
dc.identifier.citedreferenceCoates, A. J., S. Tsang, A. Wellbrock, R. Frahm, J. Winningham, S. Barabash, R. Lundin, D. Young, and F. Crary ( 2011 ), Ionospheric photoelectrons: Comparing Venus, Earth, Mars and Titan, Planet. Space Sci., 59 ( 10 ), 1019 – 1027.
dc.identifier.citedreferenceConnerney, J., M. Acuña, N. Ness, G. Kletetschka, D. Mitchell, R. Lin, and H. Reme ( 2005 ), Tectonic implications of Mars crustal magnetism, Proc. Natl. Acad. Sci. U.S.A., 102 ( 42 ), 14,970 – 14,975.
dc.identifier.citedreferenceFontenla, J. M., E. Quémerais, I. González Hernández, C. Lindsey, and M. Haberreiter ( 2009 ), Solar irradiance forecast and far‐side imaging, Adv. Space Res., 44, 457 – 464, doi: 10.1016/j.asr.2009.04.010.
dc.identifier.citedreferenceFox, J. L. ( 1991 ), Cross sections and reaction rates of relevance to aeronomy, Rev. Geophys., 29, 1110 – 1131.
dc.identifier.citedreferenceFox, J. L., and K. E. Yeager ( 2006 ), Morphology of the near‐terminator Martian ionosphere: A comparison of models and data, J. Geophys. Res., 111, A10309, doi: 10.1029/2006JA011697.
dc.identifier.citedreferenceFox, J. L., and K. E. Yeager ( 2009 ), MGS electron density profiles: Analysis of the peak magnitudes, Icarus, 200, 468 – 479, doi: 10.1016/j.icarus.2008.12.002.
dc.identifier.citedreferenceFrahm, R., et al. ( 2006a ), Locations of atmospheric photoelectron energy peaks within the Mars environment, Space Sci. Rev., 126 ( 1–4 ), 389 – 402.
dc.identifier.citedreferenceFrahm, R., et al. ( 2006b ), Carbon dioxide photoelectron energy peaks at Mars, Icarus, 182 ( 2 ), 371 – 382.
dc.identifier.citedreferenceFrahm, R., et al. ( 2010 ), Estimation of the escape of photoelectrons from Mars in 2004 liberated by the ionization of carbon dioxide and atomic oxygen, Icarus, 206 ( 1 ), 50 – 63.
dc.identifier.citedreferenceGombosi, T. I. ( 1998 ), Physics of the Space Environment, Cambridge Univ. Press, Cambridge, U. K.
dc.identifier.citedreferenceGurnett, D. A., et al. ( 2008 ), An overview of radar soundings of the Martian ionosphere from the Mars Express spacecraft, Adv. Space Res., 41, 1335 – 1346, doi: 10.1016/j.asr.2007.01.062.
dc.identifier.citedreferenceHantsch, M., and S. Bauer ( 1990 ), Solar control of the Mars ionosphere, Planet. Space Sci., 38 ( 4 ), 539 – 542.
dc.identifier.citedreferenceHinteregger, H. E., K. Fukui, and B. R. Gilson ( 1981 ), Observational, reference and model data on solar EUV, from measurements on A E ‐ E, Geophys. Res. Lett., 8, 1147 – 1150, doi: 10.1029/GL008i011p01147.
dc.identifier.citedreferenceJakosky, B. M., et al. ( 2015 ), The Mars Atmosphere and Volatile Evolution (MAVEN) Mission, Space Sci. Rev., 195, 3 – 48.
dc.identifier.citedreferenceKhazanov, G., and M. Liemohn ( 1995 ), Nonsteady state ionosphere‐plasmasphere coupling of superthermal electrons, J. Geophys. Res., 100 ( A6 ), 9669 – 9681.
dc.identifier.citedreferenceKhazanov, G. V., M. W. Liemohn, T. I. Gombosi, and A. F. Nagy ( 1993 ), Non‐steady‐state transport of superthermal electrons in the plasmasphere, Geophys. Res. Lett., 20, 2821 – 2824, doi: 10.1029/93GL03121.
dc.identifier.citedreferenceLeblanc, F., et al. ( 2008 ), Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERA‐3 and MARSIS measurements, J. Geophys. Res., 113, A08311, doi: 10.1029/2008JA013033.
dc.identifier.citedreferenceLiemohn, M., G. Khazanov, T. Moore, and S. Guiter ( 1997 ), Self‐consistent superthermal electron effects on plasmaspheric refilling, J. Geophys. Res., 102 ( A4 ), 7523 – 7536.
dc.identifier.citedreferenceLiemohn, M., Y. Ma, A. Nagy, J. Kozyra, J. Winningham, R. Frahm, J. Sharber, S. Barabash, and R. Lundin ( 2007a ), Numerical modeling of the magnetic topology near Mars auroral observations, Geophys. Res. Lett., 34, L24202, doi: 10.1029/2007GL031806.
dc.identifier.citedreferenceLiemohn, M. W., D. L. Mitchell, A. F. Nagy, J. L. Fox, T. W. Reimer, and Y. Ma ( 2003 ), Comparisons of electron fluxes measured in the crustal fields at Mars by the MGS magnetometer/electron reflectometer instrument with a B field‐dependent transport code, J. Geophys. Res., 108 ( E12 ), 5134, doi: 10.1029/2003JEOO2158.
dc.identifier.citedreferenceLiemohn, M. W., et al. ( 2006 ), Numerical interpretation of high‐altitude photoelectron observations, Icarus, 182 ( 2 ), 383 – 395.
dc.identifier.citedreferenceLiemohn, M. W., Y. Ma, R. A. Frahm, X. Fang, J. U. Kozyra, A. F. Nagy, J. D. Winningham, J. R. Sharber, S. Barabash, and R. Lundin ( 2007b ), Mars global MHD predictions of magnetic connectivity between the dayside ionosphere and the magnetospheric flanks, in The Mars Plasma Environment, pp. 63 – 76, Springer, New York.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.