Show simple item record

Biochemical Changes in the Niche Following Tumor Cell Invasion

dc.contributor.authorDecker, A.M.
dc.contributor.authorCackowski, F.C.
dc.contributor.authorJung, Y.
dc.contributor.authorTaichman, R.S.
dc.date.accessioned2017-06-16T20:10:36Z
dc.date.available2018-10-02T19:49:01Zen
dc.date.issued2017-08
dc.identifier.citationDecker, A.M.; Cackowski, F.C.; Jung, Y.; Taichman, R.S. (2017). "Biochemical Changes in the Niche Following Tumor Cell Invasion." Journal of Cellular Biochemistry 118(8): 1956-1964.
dc.identifier.issn0730-2312
dc.identifier.issn1097-4644
dc.identifier.urihttps://hdl.handle.net/2027.42/137340
dc.description.abstractMetastatic cancer is the leading cause of all cancer related deaths. Prostate cancer (PCa) metastasizes preferentially to the bone marrow, specifically within the endosteal niche. Endosteal cells secrete homing molecules that may recruit PCa cells to the bone marrow. Once there, the biochemical signature of this niche regulates PCa fate including cellular dormancy or cell cycle arrest, reactivation and resistance to chemotherapeutics. Growth factors, interleukins, adhesion molecules, as well as extra‐cellular matrix proteins can collectively change the phenotype of PCa cells. Understanding the biochemical signature of endosteal niche parasitism by PCa is imperative for the establishment of new and innovative therapeutic strategies. This review seeks to summarize these important niche signatures and the potential therapeutic approaches to target metastatic PCa within the bone marrow hematopoietic stem cell (HSC) niche. J. Cell. Biochem. 118: 1956–1964, 2017. © 2016 Wiley Periodicals, Inc.Molecular interactions of PCa cells in the bone marrow microenvironment.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPROSTATE CANCER (PCa)
dc.subject.otherMETASTASIS
dc.subject.otherOSTEOBLAST
dc.subject.otherDISSEMINATED TUMOR CELL (DTC)
dc.subject.otherNICHE
dc.titleBiochemical Changes in the Niche Following Tumor Cell Invasion
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137340/1/jcb25843_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137340/2/jcb25843.pdf
dc.identifier.doi10.1002/jcb.25843
dc.identifier.sourceJournal of Cellular Biochemistry
dc.identifier.citedreferenceSoki FN, Koh AJ, Jones JD, Kim YW, Dai J, Keller ET, Pienta KJ, Atabai K, Roca H, McCauley LK. 2014. Polarization of prostate cancer‐associated macrophages is induced by milk fat globule‐EGF factor 8 (MFG‐E8)‐mediated efferocytosis. J Biol Chem 289: 24560 – 24572.
dc.identifier.citedreferenceShiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, Jung Y, Wang J, Zalucha S, Loberg RD, Pienta KJ. 2010. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12: 116 – 127.
dc.identifier.citedreferenceSmith MR, Egerdie B, Hernandez Toriz N, Feldman R, Tammela TL, Saad F, Heracek J, Szwedowski M, Ke C, Kupic A, Leder BZ, Goessl C, Denosumab HPCSG. 2009. Denosumab in men receiving androgen‐deprivation therapy for prostate cancer. N Engl J Med 361: 745 – 755.
dc.identifier.citedreferenceSmith MR, Halabi S, Ryan CJ, Hussain A, Vogelzang N, Stadler W, Hauke RJ, Monk JP, Saylor P, Bhoopalam N, Saad F, Sanford B, Kelly WK, Morris M, Small EJ. 2014. Randomized controlled trial of early zoledronic acid in men with castration‐sensitive prostate cancer and bone metastases: Results of CALGB 90202 (alliance). J Clin Oncol 32: 1143 – 1150.
dc.identifier.citedreferenceSmith MR, Saad F, Coleman R, Shore N, Fizazi K, Tombal B, Miller K, Sieber P, Karsh L, Damiao R, Tammela TL, Egerdie B, Van Poppel H, Chin J, Morote J, Gomez‐Veiga F, Borkowski T, Ye Z, Kupic A, Dansey R, Goessl C. 2012. Denosumab and bone‐metastasis‐free survival in men with castration‐resistant prostate cancer: Results of a phase 3, randomised, placebo‐controlled trial. Lancet 379: 39 – 46.
dc.identifier.citedreferenceSoki FN, Cho SW, Kim YW, Jones JD, Park SI, Koh AJ, Entezami P, Daignault‐Newton S, Pienta KJ, Roca H. 2015. Bone marrow macrophages support prostate cancer growth in bone. Oncotarget 6: 35782.
dc.identifier.citedreferenceSosa MS, Parikh F, Maia AG, Estrada Y, Bosch A, Bragado P, Ekpin E, George A, Zheng Y, Lam H‐M. 2015. NR2F1 controls tumour cell dormancy via SOX9‐and RARβ‐driven quiescence programmes. Nat Commun 6: 6170.
dc.identifier.citedreferenceStanzione R, Picascia A, Chieffi P, Imbimbo C, Palmieri A, Mirone V, Staibano S, Franco R, De Rosa G, Schlessinger J. 2001. Variations of proline‐rich kinase Pyk2 expression correlate with prostate cancer progression. Lab Invest 81: 51 – 59.
dc.identifier.citedreferenceSun YX, Fang M, Wang J, Cooper CR, Pienta KJ, Taichman RS. 2007. Expression and activation of αvβ3 integrins by SDF‐1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate 67: 61 – 73.
dc.identifier.citedreferenceSun YX, Schneider A, Jung Y, Wang J, Dai J, Wang J, Cook K, Osman NI, Koh‐Paige AJ, Shim H. 2005. Skeletal localization and neutralization of the SDF‐1 (CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20: 318 – 329.
dc.identifier.citedreferenceSun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA, Pienta KJ, Taichman RS. 2003. Expression of CXCR4 and CXCL12 (SDF‐1) in human prostate cancers (PCa) in vivo. J Cell Biochem 89: 462 – 473.
dc.identifier.citedreferenceTaichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. 2002. Use of the stromal cell‐derived factor‐1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62: 1832 – 1837.
dc.identifier.citedreferenceTaichman RS, Loberg RD, Mehra R, Pienta KJ. 2007. The evolving biology and treatment of prostate cancer. J Clin Invest 117: 2351 – 2361.
dc.identifier.citedreferenceTaichman RS, Patel LR, Bedenis R, Wang J, Weidner S, Schumann T, Yumoto K, Berry JE, Shiozawa Y, Pienta KJ. 2013. GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS ONE 8: e61873.
dc.identifier.citedreferenceTeicher BA, Fricker SP. 2010. CXCL12 (SDF‐1)/CXCR4 pathway in cancer. Clin Cancer Res 16: 2927 – 2931.
dc.identifier.citedreferenceTu B, Peng Z‐X, Fan Q‐M, Du L, Yan W, Tang T‐T. 2014. Osteosarcoma cells promote the production of pro‐tumor cytokines in mesenchymal stem cells by inhibiting their osteogenic differentiation through the TGF‐β/Smad2/3 pathway. Exp Cell Res 320: 164 – 173.
dc.identifier.citedreferenceVan der Toom EE, Verdone JE, Pienta KJ. 2016. Disseminated tumor cells and dormancy in prostate cancer metastasis. Curr Opin Biotechnol 40: 9 – 15.
dc.identifier.citedreferenceVenkatraman L, Chia S‐M, Narmada BC, White JK, Bhowmick SS, Dewey CF, So PT, Tucker‐Kellogg L, Yu H. 2012. Plasmin triggers a switch‐like decrease in thrombospondin‐dependent activation of TGF‐β1. Biophys J 103: 1060 – 1068.
dc.identifier.citedreferenceVignani F, Bertaglia V, Buttigliero C, Tucci M, Scagliotti GV, Di Maio M. 2016. Skeletal metastases and impact of anticancer and bone‐targeted agents in patients with castration‐resistant prostate cancer. Cancer Treat Rev 44: 61 – 73.
dc.identifier.citedreferenceWeiner A, Matulewicz R, Eggener S, Schaeffer E. 2016. Increasing incidence of metastatic prostate cancer in the United States (2004–2013). Prostate Cancer Prostatic Dis 19: 395 – 397.
dc.identifier.citedreferenceXu J, Lamouille S, Derynck R. 2009. TGF‐β‐induced epithelial to mesenchymal transition. Cell Res 19: 156 – 172.
dc.identifier.citedreferenceYumoto K, Eber M, Wang J, Cackowski F, Decker A, Lee E, Nobre A, Aguirre‐Ghiso J, Jung Y, Taichman R. 2016. Axl is required for TGF‐β2‐induced dormancy of prostate cancer cells in the bone marrow. Sci Rep 6: 36520.
dc.identifier.citedreferenceZhang XH‐F, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, Smid M, Foekens JA, Massagué J. 2013. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154: 1060 – 1073.
dc.identifier.citedreferenceZheng Y, Basel D, Chow S‐O, Fong‐Yee C, Kim S, Buttgereit F, Dunstan CR, Zhou H, Seibel MJ. 2014. Targeting IL‐6 and RANKL signaling inhibits prostate cancer growth in bone. Clin Exp Metastasis 31: 921 – 933.
dc.identifier.citedreferenceAraujo A, Cook LM, Lynch CC, Basanta D. 2014. An integrated computational model of the bone microenvironment in bone‐metastatic prostate cancer. Cancer Res 74: 2391 – 2401.
dc.identifier.citedreferenceBellido T, Borba VZ, Roberson P, Manolagas SC. 1997. Activation of the Janus Kinase/STAT (Signal Transducer and Activator of Transcription) signal transduction pathway by interleukin‐6‐type cytokines promotes osteoblast differentiation 1. Endocrinology 138: 3666 – 3676.
dc.identifier.citedreferenceBragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG, Schewe DM, Aguirre‐Ghiso JA. 2013. TGF‐β2 dictates disseminated tumour cell fate in target organs through TGF‐β‐RIII and p38α/β signalling. Nat Cell Biol 15: 1351 – 1361.
dc.identifier.citedreferenceBraun S, Schlimok G, Heumos I, Schaller G, Riethdorf L, Riethmüller G, Pantel K. 2001. ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I‐III breast cancer patients. Cancer Res 61: 1890 – 1895.
dc.identifier.citedreferenceCackowski F, Eber MR, Rhee J, Decker A, Yumoto K, Berry JE, Lee E, Shiozawa Y, Jung Y, Aguirre‐Ghiso JA. 2016. Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. J Cell Biochem. doi: 10.1002/jcb.25768
dc.identifier.citedreferenceCarmeliet P, Jain RK. 2000. Angiogenesis in cancer and other diseases. Nature 407: 249 – 257.
dc.identifier.citedreferenceCaselli A, Olson TS, Otsuru S, Chen X, Hofmann TJ, Nah HD, Grisendi G, Paolucci P, Dominici M, Horwitz EM. 2013. IGF‐1‐mediated osteoblastic niche expansion enhances long‐term hematopoietic stem cell engraftment after murine bone marrow transplantation. Stem Cells 31: 2193 – 2204.
dc.identifier.citedreferenceChackal‐Roy M, Niemeyer C, Moore M, Zetter B. 1989. Stimulation of human prostatic carcinoma cell growth by factors present in human bone marrow. J Clin Invest 84: 43.
dc.identifier.citedreferenceChan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, Hennekens CH, Pollak M. 1998. Plasma insulin‐like growth factor‐I and prostate cancer risk: A prospective study. Science 279: 563 – 566.
dc.identifier.citedreferenceChott A, Sun Z, Morganstern D, Pan J, Li T, Susani M, Mosberger I, Upton MP, Bubley GJ, Balk SP. 1999. Tyrosine kinases expressed in vivo by human prostate cancer bone marrow metastases and loss of the type 1 insulin‐like growth factor receptor. Am J Pathol 155: 1271 – 1279.
dc.identifier.citedreferenceDenham JW, Joseph D, Lamb DS, Spry NA, Duchesne G, Matthews J, Atkinson C, Tai KH, Christie D, Kenny L, Turner S, Gogna NK, Diamond T, Delahunt B, Oldmeadow C, Attia J, Steigler A. 2014. Short‐term androgen suppression and radiotherapy versus intermediate‐term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): An open‐label, randomised, phase 3 factorial trial. Lancet Oncol 15: 1076 – 1089.
dc.identifier.citedreferenceDormady SP, Zhang X‐M, Basch RS. 2000. Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest‐specific gene‐6 (GAS6). Proc Natl Acad Sci USA 97: 12260 – 12265.
dc.identifier.citedreferenceErlebacher A, Derynck R. 1996. Increased expression of TGF‐beta 2 in osteoblasts results in an osteoporosis‐like phenotype. J Cell Biol 132: 195 – 210.
dc.identifier.citedreferenceFelding‐Habermann B. 2003. Integrin adhesion receptors in tumor metastasis. Clin Exp Metastasis 20: 203 – 213.
dc.identifier.citedreferenceFizazi K, Carducci M, Smith M, Damiao R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, Jiang Q, Tadros S, Dansey R, Goessl C. 2011. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration‐resistant prostate cancer: A randomised, double‐blind study. Lancet 377: 813 – 822.
dc.identifier.citedreferenceFornaro M, Manes T, Languino LR. 2001. Integrins and prostate cancer metastases. Cancer Metastasis Rev 20: 321 – 331.
dc.identifier.citedreferenceGundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM, Papaemmanuil E, Brewer DS, Kallio HM, Högnäs G, Annala M. 2015. The evolutionary history of lethal metastatic prostate cancer. Nature 520: 353 – 357.
dc.identifier.citedreferenceHall CL, Dai J, van Golen KL, Keller ET, Long MW. 2006. Type I collagen receptor (α2β1) signaling promotes the growth of human prostate cancer cells within the bone. Cancer Res 66: 8648 – 8654.
dc.identifier.citedreferenceHarryman WL, Hinton JP, Rubenstein CP, Singh P, Nagle RB, Parker SJ, Knudsen BS, Cress AE. 2016. The cohesive metastasis phenotype in human prostate cancer. Biochim Biophys Acta 1886 ( 2 ): 221 – 231.
dc.identifier.citedreferenceHeinrich PC, Behrmann I, Serge H, Hermanns HM, Müller‐Newen G, Schaper F. 2003. Principles of interleukin (IL)‐6‐type cytokine signalling and its regulation. Biochem J 374: 1 – 20.
dc.identifier.citedreferenceHellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM. 2002. Expression of the type 1 insulin‐like growth factor receptor is up‐regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res 62: 2942 – 2950.
dc.identifier.citedreferenceHiraga T, Myoui A, Hashimoto N, Sasaki A, Hata K, Morita Y, Yoshikawa H, Rosen CJ, Mundy GR, Yoneda T. 2012. Bone‐derived IGF mediates crosstalk between bone and breast cancer cells in bony metastases. Cancer Res 72: 4238 – 4249.
dc.identifier.citedreferenceJung Y, Decker AM, Wang J, Lee E, Kana LA, Yumoto K, Cackowski FC, Rhee J, Carmeliet P, Buttitta L. 2016. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget 7 ( 18 ): 25698 – 25771.
dc.identifier.citedreferenceJung Y, Wang J, Song J, Shiozawa Y, Wang J, Havens A, Wang Z, Sun Y‐X, Emerson SG, Krebsbach PH. 2007. Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood 110: 82 – 90.
dc.identifier.citedreferenceKaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA. 2005. VEGFR1‐positive haematopoietic bone marrow progenitors initiate the pre‐metastatic niche. Nature 438: 820 – 827.
dc.identifier.citedreferenceKobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, Pai SK, Liu W, Fukuda K, Chambers C. 2011. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem‐like cells in bone. J Exp Med 208: 2641 – 2655.
dc.identifier.citedreferenceKrampera M, Pasini A, Rigo A, Scupoli MT, Tecchio C, Malpeli G, Scarpa A, Dazzi F, Pizzolo G, Vinante F. 2005. HB‐EGF/HER‐1 signaling in bone marrow mesenchymal stem cells: Inducing cell expansion and reversibly preventing multilineage differentiation. Blood 106: 59 – 66.
dc.identifier.citedreferenceKrzeszinski JY, Wei W, Huynh H, Jin Z, Wang X, Chang T‐C, Xie X‐J, He L, Mangala LS, Lopez‐Berestein G. 2014. MiR‐34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature 512: 431 – 435.
dc.identifier.citedreferenceLee E, Decker AM, Cackowski FC, Kana LA, Yumoto K, Jung Y, Wang J, Buttitta L, Morgan TM, Taichman RS. 2016. Growth Arrest‐Specific 6 (GAS6) promotes prostate cancer survival by G1 Arrest/S phase delay and inhibition of apoptotic pathway during chemotherapy in bone marrow. J Cell Biochem 117 ( 12 ): 2815 – 2824.
dc.identifier.citedreferenceLu X, Wang Q, Hu G, Van Poznak C, Fleisher M, Reiss M, Massagué J, Kang Y. 2009. ADAMTS1 and MMP1 proteolytically engage EGF‐like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev 23: 1882 – 1894.
dc.identifier.citedreferenceLu Y, Zhang J, Dai J, Dehne LA, Mizokami A, Yao Z, Keller ET. 2004. Osteoblasts induce prostate cancer proliferation and PSA expression through interleukin‐6‐mediated activation of the androgen receptor. Clin Exp Metastasis 21: 399 – 408.
dc.identifier.citedreferenceMaloney CW, Symons M, Steinberg BM, Soffer SZ. 2016. Epidermal growth factor receptor inhibition decreases macrophage‐promoted invasion in osteosarcoma. J Am Coll Surg 223: S140 – S141.
dc.identifier.citedreferenceMishra A, Wang J, Shiozawa Y, McGee S, Kim J, Jung Y, Joseph J, Berry JE, Havens A, Pienta KJ. 2012. Hypoxia stabilizes GAS6/Axl signaling in metastatic prostate cancer. Mol Cancer Res 10: 703 – 712.
dc.identifier.citedreferenceMiyata Y, Mitsunari K, Asai A, Takehara K, Mochizuki Y, Sakai H. 2015. Pathological significance and prognostic role of microvessel density, evaluated using CD31, CD34, and CD105 in prostate cancer patients after radical prostatectomy with neoadjuvant therapy. Prostate 75: 84 – 91.
dc.identifier.citedreferenceSroka IC, Anderson TA, McDaniel KM, Nagle RB, Gretzer MB, Cress AE. 2010. The laminin binding integrin α6β1 in prostate cancer perineural invasion. J Cell Physiol 224: 283 – 288.
dc.identifier.citedreferenceMorrissey C, Lai JS, Brown LG, Wang YC, Roudier MP, Coleman IM, Gulati R, Vakar‐Lopez F, True LD, Corey E. 2010. The expression of osteoclastogenesis‐associated factors and osteoblast response to osteolytic prostate cancer cells. Prostate 70: 412 – 424.
dc.identifier.citedreferenceMundy GR. 1997. Mechanisms of bone metastasis. Cancer 80: 1546 – 1556.
dc.identifier.citedreferenceNagle RB, Cress AE. 2011. Metastasis update: Human prostate carcinoma invasion via tubulogenesis. Prostate Cancer 2011: 1 – 10.
dc.identifier.citedreferenceNakagawa M, Kaneda T, Arakawa T, Morita S, Sato T, Yomada T, Hanada K, Kumegawa M, Hakeda Y. 2000. Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett 473: 161 – 164.
dc.identifier.citedreferenceNguyen DP, Li J, Tewari AK. 2014. Inflammation and prostate cancer: The role of interleukin 6 (IL‐6). BJU Int 113: 986 – 992.
dc.identifier.citedreferenceNetwork NCC. 2016. NCCN clinical practice gudielines in oncology: Prostate cancer version 3.2016editor^ editors.
dc.identifier.citedreferenceNör J, Mitra RS, Sutorik MM, Mooney DJ, Castle VP, Polverini PJ. 2000. Thrombospondin‐1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 37: 209 – 218.
dc.identifier.citedreferencePawar SC, Demetriou MC, Nagle RB, Bowden GT, Cress AE. 2007. Integrin α6 cleavage: A novel modification to modulate cell migration. Exp Cell Res 313: 1080 – 1089.
dc.identifier.citedreferencePorts MO, Nagle RB, Pond GD, Cress AE. 2009. Extracellular engagement of α6 integrin inhibited urokinase‐type plasminogen activator‐mediated cleavage and delayed human prostate bone metastasis. Cancer Res 69: 5007 – 5014.
dc.identifier.citedreferencePound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. 1999. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281: 1591 – 1597.
dc.identifier.citedreferenceRen B, Yee KO, Lawler J, Khosravi‐Far R. 2006. Regulation of tumor angiogenesis by thrombospondin‐1. Biochim Biophys Acta 1765: 178 – 188.
dc.identifier.citedreferenceRobey PG, Young MF, Flanders KC, Roche NS, Kondaiah P, Reddi AH, Termine JD, Sporn MB, Roberts AB. 1987. Osteoblasts synthesize and respond to transforming growth factor‐type beta (TGF‐beta) in vitro. J Cell Biol 105: 457 – 463.
dc.identifier.citedreferenceRosen CJ, Ackert‐Bicknell CL, Adamo ML, Shultz KL, Rubin J, Donahue LR, Horton LG, Delahunty KM, Beamer WG, Sipos J. 2004. Congenic mice with low serum IGF‐I have increased body fat, reduced bone mineral density, and an altered osteoblast differentiation program. Bone 35: 1046 – 1058.
dc.identifier.citedreferenceRubin J, Ackert‐Bicknell C, Zhu L, Fan X, Murphy T, Nanes M, Marcus R, Holloway L, Beamer W, Rosen C. 2002. IGF‐I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor‐κB ligand in vitro and OPG in vivo. J Clin Endocrinol Metab 87: 4273 – 4279.
dc.identifier.citedreferenceSchmelz M, Cress AE, Scott KM, Burger F, Cui H, Sallam K, McDaniel KM, Dalkin BL, Nagle RB. 2002. Different phenotypes in human prostate cancer: α6 or α3 integrin in cell‐extracellular adhesion sites. Neoplasia 4: 243 – 254.
dc.identifier.citedreferenceShiozawa Y, Havens AM, Jung Y, Ziegler AM, Pedersen EA, Wang J, Wang J, Lu G, Roodman GD, Loberg RD. 2008. Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem 105: 370 – 380.
dc.identifier.citedreferenceShiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM. 2011. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121: 1298 – 1312.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.