Show simple item record

Efficient Photocatalytic Water Reduction Using Inâ Situ Generated Knölker’s Iron Complexes

dc.contributor.authorSun, Yuan‐yuan
dc.contributor.authorWang, Hai
dc.contributor.authorChen, Nan‐yu
dc.contributor.authorLennox, Alastair J J
dc.contributor.authorFriedrich, Aleksej
dc.contributor.authorXia, Liang‐min
dc.contributor.authorLochbrunner, Stefan
dc.contributor.authorJunge, Henrik
dc.contributor.authorBeller, Matthias
dc.contributor.authorZhou, Shaolin
dc.contributor.authorLuo, Shu‐ping
dc.date.accessioned2017-06-16T20:10:57Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07-20
dc.identifier.citationSun, Yuan‐yuan ; Wang, Hai; Chen, Nan‐yu ; Lennox, Alastair J J; Friedrich, Aleksej; Xia, Liang‐min ; Lochbrunner, Stefan; Junge, Henrik; Beller, Matthias; Zhou, Shaolin; Luo, Shu‐ping (2016). "Efficient Photocatalytic Water Reduction Using Inâ Situ Generated Knölker’s Iron Complexes." ChemCatChem 8(14): 2340-2344.
dc.identifier.issn1867-3880
dc.identifier.issn1867-3899
dc.identifier.urihttps://hdl.handle.net/2027.42/137356
dc.description.abstractInâ situ generated ironâ based Knölker complexes were found to be efficient catalysts in a fully nonâ noble metal Cuâ Fe photocatalytic water reduction system. These mononuclear iron catalysts were able to generate hydrogen up to 15 times faster than previously reported [Fe3(CO)12]. A reductive quenching mechanism was shown to operate by fluorescence experiments.Photo finish: Inâ situ generated ironâ based Knölker complexes are efficient catalysts in a fully nonâ noble metal Cuâ Fe photocatalytic water reduction system. These mononuclear iron catalysts generate hydrogen up to 15 times faster than previously reported [Fe3(CO)12]. A reductive quenching mechanism is shown to operate by fluorescence experiments. CuPS=copper(I) photosensitizer; SR=sacrificial reductant.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhydrogen
dc.subject.otherphotocatalysis
dc.subject.otherreduction
dc.subject.otherwater splitting
dc.subject.otheriron
dc.titleEfficient Photocatalytic Water Reduction Using Inâ Situ Generated Knölker’s Iron Complexes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137356/1/cctc201600186.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137356/2/cctc201600186_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137356/3/cctc201600186-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/cctc.201600186
dc.identifier.sourceChemCatChem
dc.identifier.citedreferenceT. J. Yu, Y. Zeng, J. P. Chen, Y. Y. Li, G. Q. Yang, Y. Li, Angew. Chem. Int. Ed. 2013, 52, 5631 â 5635; Angew. Chem. 2013, 125, 5741 â 5745;
dc.identifier.citedreference 
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Yang, M. Wang, L. Q. Xue, F. B. Zhang, L. Chen, M. S. G. Ahlquist, L. C. Sun, ChemSusChem 2014, 7, 2889 â 2897;
dc.identifier.citedreferenceK. Mori, H. Kakudo, H. Yamashita, ACS Catal. 2014, 4, 4129 â 4135;
dc.identifier.citedreferenceC. Tang, N. Y. Cheng, Z. H. Pu, W. Xing, X. P. Sun, Angew. Chem. Int. Ed. 2015, 54, 9351 â 9355; Angew. Chem. 2015, 127, 9483 â 9487;
dc.identifier.citedreferenceN. Jiang, B. You, M. L. Sheng, Y. J. Sun, ChemCatChem 2016, 8, 106 â 112.
dc.identifier.citedreferenceM. Frey, ChemBioChem 2002, 3, 153 â 160.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. C. Li, S. Yu, J. Strong, H. L. Wang, J. Soils Sediments 2012, 12, 683 â 693;
dc.identifier.citedreferenceK. Maeda, ACS Appl. Mater. Interfaces 2014, 6, 2167 â 2173.
dc.identifier.citedreferenceV. S. Thoi, Y. J. Sun, J. R. Long, C. J. Chang, Chem. Soc. Rev. 2013, 42, 2388 â 2400;
dc.identifier.citedreferenceP. S. Bassi, Gurudayal, L. H. Wong, J. Barber, Phys. Chem. Chem. Phys. 2014, 16, 11834 â 11842;
dc.identifier.citedreferenceW. J. Liang, F. Wang, M. Wen, J. X. Jian, X. Z. Wang, B. Chen, C. H. Tung, L. Z. Wu, Chem. Eur. J. 2015, 21, 3187 â 3192.
dc.identifier.citedreferenceF. Gärtner, B. Sundararaju, A. E. Surkus, A. Boddien, B. Loges, H. Junge, P. H. Dixneuf, M. Beller, Angew. Chem. Int. Ed. 2009, 48, 9962 â 9965; Angew. Chem. 2009, 121, 10147 â 10150.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. P. Luo, E. Mejia, A. Friedrich, A. Pazidis, H. Junge, A. E. Surkus, R. Jackstell, S. Denurra, S. Gladiali, S. Lochbrunner, M. Beller, Angew. Chem. Int. Ed. 2013, 52, 419 â 441; Angew. Chem. 2013, 125, 437 â 441;
dc.identifier.citedreferenceE. Mejía, S. P. Luo, M. Karnahl, A. Friedrich, S. Tschierlei, A. E. Surkus, H. Junge, S. Gladiali, S. Lochbrunner, M. Beller, Chem. Eur. J. 2013, 19, 15972 â 15978.
dc.identifier.citedreferenceA. Quintard, J. Rodriguez, Angew. Chem. Int. Ed. 2014, 53, 4044 â 4055; Angew. Chem. 2014, 126, 4124 â 4136.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Pagnoux-Ozherelyeva, N. Pannetier, M. D. Mbaye, S. Gaillard, J. L. Renaud, Angew. Chem. Int. Ed. 2012, 51, 4976 â 4980; Angew. Chem. 2012, 124, 5060 â 5064;
dc.identifier.citedreferenceX. Lu, Y. W. Zhang, P. Yun, M. T. Zhang, T. L. Li, Org. Biomol. Chem. 2013, 11, 5264 â 5277;
dc.identifier.citedreferenceF. X. Zhu, L. Zhu-Ge, G. F. Yang, S. L. Zhou, ChemSusChem 2015, 8, 609 â 612.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Karnahl, E. Mejia, N. Rockstroh, S. Tschierlei, S. P. Luo, K. Grabow, A. Kruth, V. Bruser, H. Junge, S. Lochbrunner, M. Beller, ChemCatChem 2014, 6, 82 â 86;
dc.identifier.citedreferenceH. Junge, Z. Codola, A. Kammer, N. Rockstroh, M. Karnahl, S. P. Luo, M. M. Pohl, J. Radnik, S. Gatla, S. Wohlrab, J. Lloret, M. Costas, M. Beller, J. Mol. Catal. A 2014, 395, 449 â 456;
dc.identifier.citedreferenceS. Fischer, D. Hollmann, S. Tschierlei, M. Karnahl, N. Rockstroh, E. Barsch, P. Schwarzbach, S. P. Luo, H. Junge, M. Beller, S. Lochbrunner, R. Ludwig, A. Bruckner, ACS Catal. 2014, 4, 1845 â 1849;
dc.identifier.citedreferenceA. J. J. Lennox, S. Fischer, M. Jurrat, S.-P. Luo, N. Rockstroh, H. Junge, R. Ludwig, M. Beller, Chem. Eur. J. 2016, 22, 1233 â 1238.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. J. Knölker, E. Baum, H. Goesmann, R. Klauss, Angew. Chem. Int. Ed. 1999, 38, 2064 â 2066; Angew. Chem. 1999, 111, 2196 â 2199;
dc.identifier.citedreferenceC. P. Casey, H. R. Guan, J. Am. Chem. Soc. 2007, 129, 5816 â 5817.
dc.identifier.citedreferenceY. Zhang, D. A. J. M. Ligthart, X.-Y. Quek, L. Gao, E. J. M. Hensen, Int. J. Hydrogen Energy 2014, 39, 11537 â 11546;
dc.identifier.citedreference 
dc.identifier.citedreferenceR. Eisenberg, Science 2009, 324, 44 â 45;
dc.identifier.citedreferenceH. B. Gray, Nat. Chem. 2009, 1, 7 â 8;
dc.identifier.citedreferenceY. Tachibana, L. Vayssieres, J. R. Durrant, Nat. Photonics 2012, 6, 511 â 518.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Messinger, W. Lubitz, J. R. Shen, Phys. Chem. Chem. Phys. 2014, 16, 11810 â 11811;
dc.identifier.citedreferenceS. Berardi, S. Drouet, L. Francas, C. Gimbert-Surinach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501 â 7519.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 2014, 43, 7520 â 7535;
dc.identifier.citedreferenceN. A. Ludin, A. M. A. A. Mahmoud, A. B. Mohamad, A. A. H. Kadhum, K. Sopian, N. S. A. Karim, Renewable Sustainable Energy Rev. 2014, 31, 386 â 396.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Zhang, W. B. Lin, Chem. Soc. Rev. 2014, 43, 5982 â 5993;
dc.identifier.citedreferenceM. D. Kärkäs, O. Verho, E. V. Johnston, B. Akermark, Chem. Rev. 2014, 114, 11863 â 12001;
dc.identifier.citedreferenceZ. J. Han, R. Eisenberg, Acc. Chem. Res. 2014, 47, 2537 â 2544.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. S. Andreiadis, M. Chavarot-Kerlidou, M. Fontecave, V. Artero, Photochem. Photobiol. 2011, 87, 946 â 964;
dc.identifier.citedreferenceK. S. Joya, Y. F. Joya, K. Ocakoglu, R. vanâ deâ Krol, Angew. Chem. Int. Ed. 2013, 52, 10426 â 10437; Angew. Chem. 2013, 125, 10618 â 10630;
dc.identifier.citedreferenceK. Maeda, ACS Catal. 2013, 3, 1486 â 1503.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Klahn, T. Beweries, Rev. Inorg. Chem. 2014, 34, 177 â 198;
dc.identifier.citedreferenceL.-Z. Wu, B. Chen, Z.-J. Li, C.-H. Tung, Acc. Chem. Res. 2014, 47, 2177 â 2185;
dc.identifier.citedreferenceT. Stoll, C. E. Castillo, M. Kayanuma, M. Sandroni, C. Daniel, F. Odobel, J. Fortage, M.-N. Collomb, Coord. Chem. Rev. 2015, 304, 20 â 37.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Mills, S. K. Lee, Platinum Met. Rev. 2003, 47, 2 â 12;
dc.identifier.citedreferenceK. Sakai, H. Ozawa, Coord. Chem. Rev. 2007, 251, 2753 â 2766;
dc.identifier.citedreferenceX. Y. Liu, J. Li, Y. M. Zhang, J. G. Huang, Chem. Eur. J. 2015, 21, 7345 â 7349.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Shemesh, J. E. Macdonald, G. Menagen, U. Banin, Angew. Chem. Int. Ed. 2011, 50, 1185 â 1189; Angew. Chem. 2011, 123, 1217 â 1221;
dc.identifier.citedreferenceS. Hansen, M. Klahn, T. Beweries, U. Rosenthal, ChemSusChem 2012, 5, 656 â 660;
dc.identifier.citedreferenceY. Ghayeb, M. M. Momeni, J. Mater. Sci. Mater. Electron. 2016, 27, 1805 â 1811.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Stoll, M. Gennari, J. Fortage, C. E. Castillo, M. Rebarz, M. Sliwa, O. Poizat, F. Odobel, A. Deronzier, M.-N. Collomb, Angew. Chem. Int. Ed. 2014, 53, 1654 â 1658; Angew. Chem. 2014, 126, 1680 â 1684;
dc.identifier.citedreferenceS. D. Tilley, M. Schreier, J. Azevedo, M. Stefik, M. Graetzel, Adv. Funct. Mater. 2014, 24, 303 â 311;
dc.identifier.citedreferenceK. S. Sandhya, G. S. Remya, C. H. Suresh, Inorg. Chem. 2015, 54, 11150 â 11156;
dc.identifier.citedreferenceT. D. Nguyen-Phan, S. Luo, D. Voychok, J. Llorca, J. Graciani, J. F. Sanz, S. Sallis, W. Q. Xu, J. M. Bai, L. F. J. Piper, D. E. Polyansky, E. Fujita, S. D. Senanayake, D. J. Stacchiola, J. A. Rodriguez, ACS Catal. 2016, 6, 407 â 417.
dc.identifier.citedreference 
dc.identifier.citedreferenceL. Li, L. L. Duan, F. Y. Wen, C. Li, M. Wang, A. Hagfeld, L. C. Sun, Chem. Commun. 2012, 48, 988 â 990;
dc.identifier.citedreferenceM. Vennampalli, G. C. Liang, L. Katta, C. E. Webster, X. Zhao, Inorg. Chem. 2014, 53, 10094 â 10100;
dc.identifier.citedreferenceR. S. Khnayzer, V. S. Thoi, M. Nippe, A. E. King, J. W. Jurss, K. A. Elâ Roz, J. R. Long, C. J. Chang, F. N. Castellano, Energy Environ. Sci. 2014, 7, 1477 â 1488;
dc.identifier.citedreferenceJ. Q. Tian, N. Y. Cheng, Q. Liu, W. Xing, X. P. Sun, Angew. Chem. Int. Ed. 2015, 54, 5493 â 5497; Angew. Chem. 2015, 127, 5583 â 5587.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.