Show simple item record

Why Do Lithium–Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect

dc.contributor.authorYao, Xiahui
dc.contributor.authorDong, Qi
dc.contributor.authorCheng, Qingmei
dc.contributor.authorWang, Dunwei
dc.date.accessioned2017-06-16T20:11:02Z
dc.date.available2017-11-01T15:31:30Zen
dc.date.issued2016-09-12
dc.identifier.citationYao, Xiahui; Dong, Qi; Cheng, Qingmei; Wang, Dunwei (2016). "Why Do Lithium–Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect." Angewandte Chemie International Edition 55(38): 11344-11353.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/137359
dc.description.abstractAs an electrochemical energy‐storage technology with the highest theoretical capacity, lithium–oxygen batteries face critical challenges in terms of poor stabilities and low charge/discharge round‐trip efficiencies. It is generally recognized that these issues are connected to the parasitic chemical reactions at the anode, electrolyte, and cathode. While the detailed mechanisms of these reactions have been studied separately, the possible synergistic effects between these reactions remain poorly understood. To fill in the knowledge gap, this Minireview examines literature reports on the parasitic chemical reactions and finds the reactive oxygen species a key chemical mediator that participates in or facilitates nearly all parasitic chemical reactions. Given the ubiquitous presence of oxygen in all test cells, this finding is important. It offers new insights into how to stabilize various components of lithium–oxygen batteries for high‐performance operations and how to eventually materialize the full potentials of this promising technology.Synergistic effect: In lithium–oxygen batteries reactive oxygen species are found to be a key chemical mediator that participates in or facilitates nearly all parasitic chemical reactions at the anode, cathode, and electrolyte. Understanding of their synergistic effect will enable more rational designs for future lithium–oxygen batteries.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherreactive oxygen species
dc.subject.otherelectrochemistry
dc.subject.otherenergy storage
dc.subject.otherlithium–oxygen batteries
dc.subject.othersynergistic effect
dc.titleWhy Do Lithium–Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137359/1/anie201601783_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137359/2/anie201601783.pdf
dc.identifier.doi10.1002/anie.201601783
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceN. Togasaki, T. Momma, T. Osaka, J. Power Sources 2015, 294, 588 – 592.
dc.identifier.citedreferenceY. Shao, F. Ding, J. Xiao, J. Zhang, W. Xu, S. Park, J.-G. Zhang, Y. Wang, J. Liu, Adv. Funct. Mater. 2013, 23, 987 – 1004.
dc.identifier.citedreferenceJ. Lu, L. Li, J.-B. Park, Y.-K. Sun, F. Wu, K. Amine, Chem. Rev. 2014, 114, 5611 – 5640.
dc.identifier.citedreferenceJ. Wang, Y. Li, X. Sun, Nano Energy 2013, 2, 443 – 467.
dc.identifier.citedreferenceM. A. Schroeder, A. J. Pearse, A. C. Kozen, X. Chen, K. Gregorczyk, X. Han, A. Cao, L. Hu, S. B. Lee, G. W. Rubloff, M. Noked, Chem. Mater. 2015, 27, 5305 – 5313.
dc.identifier.citedreferenceA. Khetan, A. Luntz, V. Viswanathan, J. Phys. Chem. Lett. 2015, 6, 1254 – 1259.
dc.identifier.citedreferenceC. M. Burke, V. Pande, A. Khetan, V. Viswanathan, B. D. McCloskey, Proc. Natl. Acad. Sci. USA 2015, 112, 9293 – 9298.
dc.identifier.citedreferenceB. D. McCloskey, C. M. Burke, J. E. Nichols, S. E. Renfrew, Chem. Commun. 2015, 51, 12701 – 12715.
dc.identifier.citedreferenceS. Meini, S. Solchenbach, M. Piana, H. A. Gasteiger, J. Electrochem. Soc. 2014, 161, A 1306 –A 1314.
dc.identifier.citedreferenceF. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, H. Zhou, Nat. Commun. 2015, 6, 7843.
dc.identifier.citedreferenceT. Liu, M. Leskes, W. Yu, A. J. Moore, L. Zhou, P. M. Bayley, G. Kim, C. P. Grey, Science 2015, 350, 530 – 533.
dc.identifier.citedreferenceY. Shao, S. Park, J. Xiao, J.-G. Zhang, Y. Wang, J. Liu, ACS Catal. 2012, 2, 844 – 857.
dc.identifier.citedreferenceJ. R. Harding, Y. C. Lu, Y. Tsukada, Y. Shao-Horn, Phys. Chem. Chem. Phys. 2012, 14, 10540 – 10546.
dc.identifier.citedreferenceS. Ma, Y. Wu, J. Wang, Y. Zhang, Y. Zhang, X. Yan, Y. Wei, P. Liu, J. Wang, K. Jiang, S. Fan, Y. Xu, Z. Peng, Nano Lett. 2015, 15, 8084 – 8090.
dc.identifier.citedreferenceS. J. Kang, T. Mori, S. Narizuka, W. Wilcke, H.-C. Kim, Nat. Commun. 2014, 5, 3937.
dc.identifier.citedreferenceJ. Lu, Y. Lei, K. C. Lau, X. Y. Luo, P. Du, J. G. Wen, R. S. Assary, U. Das, D. J. Miller, J. W. Elam, H. M. Albishri, D. Abd El-Hady, Y. K. Sun, L. A. Curtiss, K. Amine, Nat. Commun. 2013, 4, 2383.
dc.identifier.citedreferenceJ. Xie, X. Yao, Q. Cheng, I. P. Madden, P. Dornath, C.-C. Chang, W. Fan, D. Wang, Angew. Chem. Int. Ed. 2015, 54, 4299 – 4303; Angew. Chem. 2015, 127, 4373 – 4377.
dc.identifier.citedreferenceJ. Xie, X. Yao, I. P. Madden, D.-E. Jiang, L.-Y. Chou, C.-K. Tsung, D. Wang, J. Am. Chem. Soc. 2014, 136, 8903 – 8906.
dc.identifier.citedreferenceX. Yao, Q. Cheng, J. Xie, Q. Dong, D. Wang, ACS Appl. Mater. Interfaces 2015, 7, 21948 – 21955.
dc.identifier.citedreferenceM. M. O. Thotiyl, S. A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P. G. Bruce, Nat. Mater. 2013, 12, 1050 – 1056.
dc.identifier.citedreferenceA. C. Kozen, C.-F. Lin, A. J. Pearse, M. A. Schroeder, X. Han, L. Hu, S. B. Lee, G. W. Rubloff, M. Noked, ACS Nano 2015, 9, 5884 – 5892.
dc.identifier.citedreferenceS. Visco, V. Nimon, A. Petrov, K. Pridatko, N. Goncharenko, E. Nimon, L. De Jonghe, Y. Volfkovich, D. Bograchev, J. Solid State Electrochem. 2014, 18, 1443 – 1456.
dc.identifier.citedreferenceJ. Lu, Y. J. Lee, X. Luo, K. C. Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. Wen, D. Zhai, Z. Chen, D. J. Miller, Y. S. Jeong, J.-B. Park, Z. Z. Fang, B. Kumar, A. Salehi-Khojin, Y.-K. Sun, L. A. Curtiss, K. Amine, Nature 2016, 529, 377 – 382.
dc.identifier.citedreferenceG. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, J. Phys. Chem. Lett. 2010, 1, 2193 – 2203.
dc.identifier.citedreferenceP. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 19 – 29.
dc.identifier.citedreferenceK. G. Gallagher, S. Goebel, T. Greszler, M. Mathias, W. Oelerich, D. Eroglu, V. Srinivasan, Energy Environ. Sci. 2014, 7, 1555 – 1563.
dc.identifier.citedreferenceK. Abraham, Z. Jiang, J. Electrochem. Soc. 1996, 143, 1 – 5.
dc.identifier.citedreferenceJ. Read, J. Electrochem. Soc. 2006, 153, A 96.
dc.identifier.citedreferenceA. C. Luntz, B. D. McCloskey, Chem. Rev. 2014, 114, 11721 – 11750.
dc.identifier.citedreferenceF. Li, T. Zhang, H. Zhou, Energy Environ. Sci. 2013, 6, 1125 – 1141.
dc.identifier.citedreferenceM. D. Bhatt, H. Geaney, M. Nolan, C. O’Dwyer, Phys. Chem. Chem. Phys. 2014, 16, 12093 – 12130.
dc.identifier.citedreferenceM. Balaish, A. Kraytsberg, Y. Ein-Eli, Phys. Chem. Chem. Phys. 2014, 16, 2801 – 2822.
dc.identifier.citedreferenceZ.-w. Chang, J.-j. Xu, Q.-c. Liu, L. Li, X.-b. Zhang, Adv. Energy Mater. 2015, 5, 1500633.
dc.identifier.citedreferenceB. D. McCloskey, D. S. Bethune, R. M. Shelby, T. Mori, R. Scheffler, A. Speidel, M. Sherwood, A. C. Luntz, J. Phys. Chem. Lett. 2012, 3, 3043 – 3047.
dc.identifier.citedreferenceY. C. Lu, B. M. Gallant, D. G. Kwabi, J. R. Harding, R. R. Mitchell, M. S. Whittingham, Y. Shao-Horn, Energy Environ. Sci. 2013, 6, 750 – 768.
dc.identifier.citedreferenceZ.-L. Wang, D. Xu, J.-J. Xu, X.-B. Zhang, Chem. Soc. Rev. 2014, 43, 7746 – 7786.
dc.identifier.citedreferenceB. D. McCloskey, R. Scheffler, A. Speidel, G. Girishkumar, A. C. Luntz, J. Phys. Chem. C 2012, 116, 23897 – 23905.
dc.identifier.citedreferenceB. D. McCloskey, A. Valery, A. C. Luntz, S. R. Gowda, G. M. Wallraff, J. M. Garcia, T. Mori, L. E. Krupp, J. Phys. Chem. Lett. 2013, 4, 2989 – 2993.
dc.identifier.citedreferenceB. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshøj, J. K. Nørskov, A. C. Luntz, J. Phys. Chem. Lett. 2012, 3, 997 – 1001.
dc.identifier.citedreferenceM. M. O. Thotiyl, S. A. Freunberger, Z. Q. Peng, P. G. Bruce, J. Am. Chem. Soc. 2013, 135, 494 – 500.
dc.identifier.citedreferenceB. D. McCloskey, D. S. Bethune, R. M. Shelby, G. Girishkumar, A. C. Luntz, J. Phys. Chem. Lett. 2011, 2, 1161 – 1166.
dc.identifier.citedreferenceZ. Peng, S. A. Freunberger, Y. Chen, P. G. Bruce, Science 2012, 337, 563 – 566.
dc.identifier.citedreferenceB. D. Adams, R. Black, Z. Williams, R. Fernandes, M. Cuisinier, E. J. Berg, P. Novak, G. K. Murphy, L. F. Nazar, Adv. Energy Mater. 2015, 5, 1400867.
dc.identifier.citedreferenceW. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci. 2014, 7, 513 – 537.
dc.identifier.citedreferenceM. N. Obrovac, V. L. Chevrier, Chem. Rev. 2014, 114, 11444 – 11502.
dc.identifier.citedreferenceF. S. Gittleson, R. C. Sekol, G. Doubek, M. Linardi, A. D. Taylor, Phys. Chem. Chem. Phys. 2014, 16, 3230 – 3237.
dc.identifier.citedreferenceR. Black, J.-H. Lee, B. Adams, C. A. Mims, L. F. Nazar, Angew. Chem. Int. Ed. 2013, 52, 392 – 396; Angew. Chem. 2013, 125, 410 – 414.
dc.identifier.citedreferenceB. D. McCloskey, R. Scheffler, A. Speidel, D. S. Bethune, R. M. Shelby, A. C. Luntz, J. Am. Chem. Soc. 2011, 133, 18038 – 18041.
dc.identifier.citedreferenceE. J. Calvo, N. Mozhzhukhina, Electrochem. Commun. 2013, 31, 56 – 58.
dc.identifier.citedreferenceJ. Yang, D. Zhai, H.-H. Wang, K. C. Lau, J. A. Schlueter, P. Du, D. J. Myers, Y.-K. Sun, L. A. Curtiss, K. Amine, Phys. Chem. Chem. Phys. 2013, 15, 3764 – 3771.
dc.identifier.citedreferenceR. Black, S. H. Oh, J. H. Lee, T. Yim, B. Adams, L. F. Nazar, J. Am. Chem. Soc. 2012, 134, 2902 – 2905.
dc.identifier.citedreferenceP. Du, J. Lu, K. C. Lau, X. Luo, J. Bareno, X. Zhang, Y. Ren, Z. Zhang, L. A. Curtiss, Y. K. Sun, K. Amine, Phys. Chem. Chem. Phys. 2013, 15, 5572 – 5581.
dc.identifier.citedreferenceD. G. Kwabi, T. P. Batcho, C. V. Amanchukwu, N. Ortiz-Vitoriano, P. Hammond, C. V. Thompson, Y. Shao-Horn, J. Phys. Chem. Lett. 2014, 5, 2850 – 2856.
dc.identifier.citedreferenceW. Xu, K. Xu, V. V. Viswanathan, S. A. Towne, J. S. Hardy, J. Xiao, Z. Nie, D. Hu, D. Wang, J.-G. Zhang, J. Power Sources 2011, 196, 9631 – 9639.
dc.identifier.citedreferenceD. Sharon, M. Afri, M. Noked, A. Garsuch, A. A. Frimer, D. Aurbach, J. Phys. Chem. Lett. 2013, 4, 3115 – 3119.
dc.identifier.citedreferenceJ. Xie, Q. Dong, I. Madden, X. Yao, Q. Cheng, P. Dornath, W. Fan, D. Wang, Nano Lett. 2015, 15, 8371 – 8376.
dc.identifier.citedreferenceL. Johnson, C. Li, Z. Liu, Y. Chen, S. A. Freunberger, P. C. Ashok, B. B. Praveen, K. Dholakia, J.-M. Tarascon, P. G. Bruce, Nat. Chem. 2014, 6, 1091 – 1099.
dc.identifier.citedreferenceS. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Bardé, P. Novák, P. G. Bruce, J. Am. Chem. Soc. 2011, 133, 8040 – 8047.
dc.identifier.citedreferenceV. S. Bryantsev, V. Giordani, W. Walker, M. Blanco, S. Zecevic, K. Sasaki, J. Uddin, D. Addison, G. V. Chase, J. Phys. Chem. A 2011, 115, 12399 – 12409.
dc.identifier.citedreferenceV. S. Bryantsev, J. Uddin, V. Giordani, W. Walker, D. Addison, G. V. Chase, J. Electrochem. Soc. 2013, 160, A 160 –A 171.
dc.identifier.citedreferenceW. Walker, V. Giordani, J. Uddin, V. S. Bryantsev, G. V. Chase, D. Addison, J. Am. Chem. Soc. 2013, 135, 2076 – 2079.
dc.identifier.citedreferenceY. Chen, S. A. Freunberger, Z. Peng, F. Bardé, P. G. Bruce, J. Am. Chem. Soc. 2012, 134, 7952 – 7957.
dc.identifier.citedreferenceD. Sharon, D. Hirsberg, M. Afri, A. Garsuch, A. A. Frimer, D. Aurbach, J. Phys. Chem. C 2014, 118, 15207 – 15213.
dc.identifier.citedreferenceH. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun, B. Scrosati, Nat. Chem. 2012, 4, 579 – 585.
dc.identifier.citedreferenceV. S. Bryantsev, F. Faglioni, J. Phys. Chem. A 2012, 116, 7128 – 7138.
dc.identifier.citedreferenceJ. R. Harding, C. V. Amanchukwu, P. T. Hammond, Y. Shao-Horn, J. Phys. Chem. C 2015, 119, 6947 – 6955.
dc.identifier.citedreferenceS. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Bardé, P. G. Bruce, Angew. Chem. Int. Ed. 2011, 50, 8609 – 8613; Angew. Chem. 2011, 123, 8768 – 8772.
dc.identifier.citedreferenceA. Khetan, H. Pitsch, V. Viswanathan, J. Phys. Chem. Lett. 2014, 5, 2419 – 2424.
dc.identifier.citedreferenceN. Mozhzhukhina, L. P. M. De Leo, E. J. Calvo, J. Phys. Chem. C 2013, 117, 18375 – 18380.
dc.identifier.citedreferenceM. Piana, J. Wandt, S. Meini, I. Buchberger, N. Tsiouvaras, H. A. Gasteiger, J. Electrochem. Soc. 2014, 161, A 1992 –A 2001.
dc.identifier.citedreferenceK. U. Schwenke, J. Herranz, H. A. Gasteiger, M. Piana, J. Electrochem. Soc. 2015, 162, A 905 –A 914.
dc.identifier.citedreferenceC. O. Laoire, S. Mukerjee, K. M. Abraham, E. J. Plichta, M. A. Hendrickson, J. Phys. Chem. C 2010, 114, 9178 – 9186.
dc.identifier.citedreferenceN. B. Aetukuri, B. D. McCloskey, J. M. García, L. E. Krupp, V. Viswanathan, A. C. Luntz, Nat. Chem. 2015, 7, 50 – 56.
dc.identifier.citedreferenceJ. M. García, H. W. Horn, J. E. Rice, J. Phys. Chem. Lett. 2015, 6, 1795 – 1799.
dc.identifier.citedreferenceR. S. Assary, J. Lu, P. Du, X. Luo, X. Zhang, Y. Ren, L. A. Curtiss, K. Amine, ChemSusChem 2013, 6, 51 – 55.
dc.identifier.citedreferenceX.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, Q. Zhang, Adv. Sci. 2016, 3, 1500213.
dc.identifier.citedreferenceJ. Uddin, V. S. Bryantsev, V. Giordani, W. Walker, G. V. Chase, D. Addison, J. Phys. Chem. Lett. 2013, 4, 3760 – 3765.
dc.identifier.citedreferenceV. Giordani, W. Walker, V. S. Bryantsev, J. Uddin, G. V. Chase, D. Addison, J. Electrochem. Soc. 2013, 160, A 1544 –A 1550.
dc.identifier.citedreferenceV. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243 – 3262.
dc.identifier.citedreferenceJ. Hassoun, H. G. Jung, D. J. Lee, J. B. Park, K. Amine, Y. K. Sun, B. Scrosati, Nano Lett. 2012, 12, 5775 – 5779.
dc.identifier.citedreferenceZ. Guo, X. Dong, Y. Wang, Y. Xia, Chem. Commun. 2015, 51, 676 – 678.
dc.identifier.citedreferenceG. A. Elia, D. Bresser, J. Reiter, P. Oberhumer, Y.-K. Sun, B. Scrosati, S. Passerini, J. Hassoun, ACS Appl. Mater. Interfaces 2015, 7, 22638 – 22643.
dc.identifier.citedreferenceJ.-L. Shui, J. S. Okasinski, P. Kenesei, H. A. Dobbs, D. Zhao, J. D. Almer, D.-J. Liu, Nat. Commun. 2013, 4, 2255.
dc.identifier.citedreferenceR. Younesi, M. Hahlin, M. Roberts, K. Edström, J. Power Sources 2013, 225, 40 – 45.
dc.identifier.citedreferenceM. S. Park, S. B. Ma, D. J. Lee, D. Im, S.-G. Doo, O. Yamamoto, Sci. Rep. 2014, 4, 3815.
dc.identifier.citedreferenceH. Lee, D. J. Lee, J.-N. Lee, J. Song, Y. Lee, M.-H. Ryou, J.-K. Park, Y. M. Lee, Electrochim. Acta 2014, 123, 419 – 425.
dc.identifier.citedreferenceR. S. Assary, J. Lu, X. Luo, X. Zhang, Y. Ren, H. Wu, H. M. Albishri, D. A. El-Hady, A. S. Al-Bogami, L. A. Curtiss, K. Amine, ChemPhysChem 2014, 15, 2077 – 2083.
dc.identifier.citedreferenceM. Marinaro, P. Balasubramanian, E. Gucciardi, S. Theil, L. Jörissen, M. Wohlfahrt-Mehrens, ChemSusChem 2015, 8, 3139 – 3145.
dc.identifier.citedreferenceJ. K. Stark, Y. Ding, P. A. Kohl, J. Phys. Chem. C 2013, 117, 4980 – 4985.
dc.identifier.citedreferenceD. J. Lee, H. Lee, Y.-J. Kim, J.-K. Park, H.-T. Kim, Adv. Mater. 2016, 28, 857 – 863.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.