Show simple item record

White matter developmental trajectories associated with persistence and recovery of childhood stuttering

dc.contributor.authorChow, Ho Ming
dc.contributor.authorChang, Soo‐eun
dc.date.accessioned2017-06-16T20:11:05Z
dc.date.available2018-08-28T15:28:59Zen
dc.date.issued2017-07
dc.identifier.citationChow, Ho Ming; Chang, Soo‐eun (2017). "White matter developmental trajectories associated with persistence and recovery of childhood stuttering." Human Brain Mapping 38(7): 3345-3359.
dc.identifier.issn1065-9471
dc.identifier.issn1097-0193
dc.identifier.urihttps://hdl.handle.net/2027.42/137362
dc.description.abstractStuttering affects the fundamental human ability of fluent speech production, and can have a significant negative impact on an individual’s psychosocial development. While the disorder affects about 5% of all preschool children, approximately 80% of them recover naturally within a few years of stuttering onset. The pathophysiology and neuroanatomical development trajectories associated with persistence and recovery of stuttering are still largely unknown. Here, the first mixed longitudinal diffusion tensor imaging (DTI) study of childhood stuttering has been reported. A total of 195 high quality DTI scans from 35 children who stutter (CWS) and 43 controls between 3 and 12 years of age were acquired, with an average of three scans per child, each collected approximately a year apart. Fractional anisotropy (FA), a measure reflecting white matter structural coherence, was analyzed voxelâ wise to examine group and ageâ related differences using a linear mixedâ effects (LME) model. Results showed that CWS exhibited decreased FA relative to controls in the left arcuate fasciculus, underlying the inferior parietal and posterior temporal areas, and the mid body of corpus callosum. Further, white matter developmental trajectories reflecting growth rate of these tract regions differentiated children with persistent stuttering from those who recovered from stuttering. Specifically, a reduction in FA growth rate (i.e., slower FA growth with age) in persistent children relative to fluent controls in the left arcuate fasciculus and corpus callosum was found, which was not evident in recovered children. These findings provide first glimpses into the possible neural mechanisms of onset, persistence, and recovery of childhood stuttering. Hum Brain Mapp 38:3345â 3359, 2017. © 2017 Wiley Periodicals, Inc.
dc.publisherThomson Delmar Learning
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlongitudinal study
dc.subject.otherspeech disorder
dc.subject.otherlanguage
dc.subject.otherbrain development
dc.subject.otherStuttering
dc.titleWhite matter developmental trajectories associated with persistence and recovery of childhood stuttering
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137362/1/hbm23590.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137362/2/hbm23590_am.pdf
dc.identifier.doi10.1002/hbm.23590
dc.identifier.sourceHuman Brain Mapping
dc.identifier.citedreferenceSmith A, Sadagopan N, Walsh B, Weberâ Fox C ( 2010 ): Increasing phonological complexity reveals heightened instability in interâ articulatory coordination in adults who stutter. J Fluency Disord 35: 1 â 18.
dc.identifier.citedreferenceShaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, Giedd J ( 2006 ): Intellectual ability and cortical development in children and adolescents. Nature 440: 676 â 679.
dc.identifier.citedreferenceSmith SM, Jenkinson M, Johansenâ Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE ( 2006 ): Tractâ based spatial statistics: Voxelwise analysis of multiâ subject diffusion data. NeuroImage 31: 1487 â 1505.
dc.identifier.citedreferenceSmith A, Goffman L, Sasisekaran J, Weberâ Fox C ( 2012 ): Language and motor abilities of preschool children who stutter: Evidence from behavioral and kinematic indices of nonword repetition performance. J Fluency Disord 37: 344 â 358.
dc.identifier.citedreferenceSommer M, Koch MA, Paulus W, Weiller C, Buchel C ( 2002 ): Disconnection of speechâ relevant brain areas in persistent developmental stuttering. Lancet 360: 380 â 383.
dc.identifier.citedreferenceTaylor JG, Taylor NR ( 2000 ): Analysis of recurrent corticoâ basal gangliaâ thalamic loops for working memory. Biol Cybern 82: 415 â 432.
dc.identifier.citedreferenceThomalla G, Siebner HR, Jonas M, Baumer T, Biermannâ Ruben K, Hummel F, Gerloff C, Mullerâ Vahl K, Schnitzler A, Orth M, Munchau A ( 2009 ): Structural changes in the somatosensory system correlate with tic severity in Gilles de la Tourette syndrome. Brain 132: 765 â 777.
dc.identifier.citedreferenceTourville JA, Guenther FH ( 2011 ): The DIVA model: A neural theory of speech acquisition and production. Lang Cogn Processes 26: 952 â 981.
dc.identifier.citedreferenceVerbeke G, Molenberghs G ( 2009 ): Linear Mixed Models for Longitudinal Data. New York: Springer Science & Business Media.
dc.identifier.citedreferenceVoytek B, Knight RT ( 2010 ): Prefrontal cortex and basal ganglia contributions to visual working memory. Proc Natl Acad Sci U S A 107: 18167 â 18172.
dc.identifier.citedreferenceWalsh B, Mettel KM, Smith A ( 2015 ): Speech motor planning and execution deficits in early childhood stuttering. J Neurodev Disord 7: 27.
dc.identifier.citedreferenceWang R, Benner T, Sorensen AG, Wedeen VJ ( 2007 ): Diffusion toolkit: A software package for diffusion imaging data processing and tractography. In: Proc Intl Soc Mag Reson Med Vol. 15.
dc.identifier.citedreferenceWatkins KE, Smith SM, Davis S, Howell P ( 2008 ): Structural and functional abnormalities of the motor system in developmental stuttering. Brain 131: 50 â 59.
dc.identifier.citedreferenceWechsler D ( 1999 ): Wechsler Abbreviated Scale of Intelligence. San Antonio: Psychological Corporation.
dc.identifier.citedreferenceWechsler D ( 2002 ): Primary Scale of Intelligenceâ III. San Antonio: Psychological Corporation.
dc.identifier.citedreferenceWilliams KT ( 2007 ): EVTâ 2: Expressive Vocabulary Test. Minneapolis, MN: Pearson Assessments.
dc.identifier.citedreferenceYairi E, Ambrose NG ( 1999 ): Early childhood stuttering I: Persistency and recovery rates. JSLHR 42: 1097 â 1112.
dc.identifier.citedreferenceYairi E, Ambrose NG ( 2005 ): Early Childhood Stuttering for Clinicians by Clinicians. Austin, Tex. PROâ ED.
dc.identifier.citedreferenceYendiki A, Koldewyn K, Kakunoori S, Kanwisher N, Fischl B ( 2014 ): Spurious group differences due to head motion in a diffusion MRI study. NeuroImage 88: 79 â 90.
dc.identifier.citedreferenceYoon U, Fonov VS, Perusse D, Evans AC, Brain Development Cooperative G ( 2009 ): The effect of template choice on morphometric analysis of pediatric brain data. NeuroImage 45: 769 â 777.
dc.identifier.citedreferenceZalesky A ( 2011 ): Moderating registration misalignment in voxelwise comparisons of DTI data: A performance evaluation of skeleton projection. Magn Reson Imaging 29: 111 â 125.
dc.identifier.citedreferenceZielinski BA, Prigge MB, Nielsen JA, Froehlich AL, Abildskov TJ, Anderson JS, Fletcher PT, Zygmunt KM, Travers BG, Lange N, Alexander AL, Bigler ED, Lainhart JE ( 2014 ): Longitudinal changes in cortical thickness in autism and typical development. Brain 137: 1799 â 1812.
dc.identifier.citedreferenceAlexander GE, Crutcher MD ( 1990 ): Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends Neurosci 13: 266 â 271.
dc.identifier.citedreferenceAlm PA ( 2004 ): Stuttering and the basal ganglia circuits: A critical review of possible relations. J Commun Disord 37: 325 â 369.
dc.identifier.citedreferenceAshburner J ( 2007 ): A fast diffeomorphic image registration algorithm. NeuroImage 38: 95 â 113.
dc.identifier.citedreferenceAshburner J, Friston KJ ( 2005 ): Unified segmentation. NeuroImage 26: 839 â 851.
dc.identifier.citedreferenceAshby FG, Maddox WT ( 2011 ): Human category learning 2.0. Ann N Y Acad Sci 1224: 147 â 161.
dc.identifier.citedreferenceBeal DS, Gracco VL, Brettschneider J, Kroll RM, De Nil LF ( 2013 ): A voxelâ based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter. Cortex 49: 2151 â 2161.
dc.identifier.citedreferenceBernalâ Rusiel JL, Greve DN, Reuter M, Fischl B, Sabuncu MR, Alzheimer’s Disease Neuroimaging I ( 2013 ): Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models. NeuroImage 66: 249 â 260.
dc.identifier.citedreferenceBloodstein O, Ratner NB ( 2008 ): A Handbook on Stuttering. Clifton Park, NY: Thomson Delmar Learning. xiii, 552 p.
dc.identifier.citedreferenceBurgund ED, Kang HC, Kelly JE, Buckner RL, Snyder AZ, Petersen SE, Schlaggar BL ( 2002 ): The feasibility of a common stereotactic space for children and adults in fMRI studies of development. NeuroImage 17: 184 â 200.
dc.identifier.citedreferenceCai S, Tourville JA, Beal DS, Perkell JS, Guenther FH, Ghosh SS ( 2014 ): Diffusion imaging of cerebral white matter in persons who stutter: Evidence for networkâ level anomalies. Front Hum Neurosci 8: 54.
dc.identifier.citedreferenceCatani M, Dell’acqua F, Vergani F, Malik F, Hodge H, Roy P, Valabregue R, Thiebaut de Schotten M ( 2012 ): Short frontal lobe connections of the human brain. Cortex 48: 273 â 291.
dc.identifier.citedreferenceChang SE, Zhu DC ( 2013 ): Neural network connectivity differences in children who stutter. Brain 136: 3709 â 3726.
dc.identifier.citedreferenceChang SE, Erickson KI, Ambrose NG, Hasegawaâ Johnson MA, Ludlow CL ( 2008 ): Brain anatomy differences in childhood stuttering. NeuroImage 39: 1333 â 1344.
dc.identifier.citedreferenceChang LC, Walker L, Pierpaoli C ( 2012 ): Informed RESTORE: A method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts. Magn Reson Med 68: 1654 â 1663.
dc.identifier.citedreferenceChang SE, Zhu DC, Choo AL, Angstadt M ( 2015 ): White matter neuroanatomical differences in young children who stutter. Brain 138: 694 â 711.
dc.identifier.citedreferenceChang SE, Angstadt M, Chow HM, Etchell AC, Garnett EO, Choo AL, Kessler D, Welsh RC, Sripada C ( 2017 ): Anomalous network architecture of the resting brain in children who stutter. Journal of fluency Disord. doi: 10.1016/j.jfludis.2017.01.002.
dc.identifier.citedreferenceChen G, Saad ZS, Britton JC, Pine DS, Cox RW ( 2013 ): Linear mixedâ effects modeling approach to FMRI group analysis. NeuroImage 73: 176 â 190.
dc.identifier.citedreferenceCivier O, Tasko SM, Guenther FH ( 2010 ): Overreliance on auditory feedback may lead to sound/syllable repetitions: Simulations of stuttering and fluencyâ inducing conditions with a neural model of speech production. J Fluency Disord 35: 246 â 279.
dc.identifier.citedreferenceCivier O, Bullock D, Max L, Guenther FH ( 2013 ): Computational modeling of stuttering caused by impairments in a basal ganglia thalamoâ cortical circuit involved in syllable selection and initiation. Brain Lang 126: 263 â 278.
dc.identifier.citedreferenceCivier O, Kronfeldâ Duenias V, Amir O, Ezratiâ Vinacour R, Benâ Shachar M ( 2015 ): Reduced fractional anisotropy in the anterior corpus callosum is associated with reduced speech fluency in persistent developmental stuttering. Brain Lang 143: 20 â 31.
dc.identifier.citedreferenceCnaan A, Laird NM, Slasor P ( 1997 ): Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat Med 16: 2349 â 2380.
dc.identifier.citedreferenceConnally EL, Ward D, Howell P, Watkins KE ( 2014 ): Disrupted white matter in language and motor tracts in developmental stuttering. Brain Lang 131: 25 â 35.
dc.identifier.citedreferenceCraig A, Blumgart E, Tran Y ( 2009 ): The impact of stuttering on the quality of life in adults who stutter. J Fluency Disord 34: 61 â 71.
dc.identifier.citedreferenceCykowski MD, Fox PT, Ingham RJ, Ingham JC, Robin DA ( 2010 ): A study of the reproducibility and etiology of diffusion anisotropy differences in developmental stuttering: A potential role for impaired myelination. NeuroImage 52: 1495 â 1504.
dc.identifier.citedreferenceDesai J, Huo Y, Wang Z, Bansal R, Williams SC, Lythgoe D, Zelaya FO, Peterson BS ( 2017 ): Reduced perfusion in Broca’s area in developmental stuttering. Hum Brain Mapp 38: 1865 â 1874.
dc.identifier.citedreferenceDouaud G, Behrens TE, Poupon C, Cointepas Y, Jbabdi S, Gaura V, Golestani N, Krystkowiak P, Verny C, Damier P, Bachoudâ Levi AC, Hantraye P, Remy P ( 2009 ): In vivo evidence for the selective subcortical degeneration in Huntington’s disease. NeuroImage 46: 958 â 966.
dc.identifier.citedreferenceDunn DM, Dunn LM ( 2007 ): Peabody Picture Vocabulary Test: Manual. Minneapolis, MN: Pearson.
dc.identifier.citedreferenceEll SW, Weinstein A, Ivry RB ( 2010 ): Ruleâ based categorization deficits in focal basal ganglia lesion and Parkinson’s disease patients. Neuropsychologia 48: 2974 â 2986.
dc.identifier.citedreferenceEtchell AC, Johnson BW, Sowman PF ( 2014 ): Behavioral and multimodal neuroimaging evidence for a deficit in brain timing networks in stuttering: A hypothesis and theory. Front Hum Neurosci 8: 467.
dc.identifier.citedreferenceFitzmaurice G, Davidian M, Verbeke G, Molenberghs G ( 2008 ): Longitudinal Data Analysis. Boca Raton: CRC Press.
dc.identifier.citedreferenceFriederici AD ( 2006 ): What’s in control of language?. Nat Neurosci 9: 991 â 992.
dc.identifier.citedreferenceGhosh SS, Kakunoori S, Augustinack J, Nietoâ Castanon A, Kovelman I, Gaab N, Christodoulou JA, Triantafyllou C, Gabrieli JD, Fischl B ( 2010 ): Evaluating the validity of volumeâ based and surfaceâ based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age. NeuroImage 53: 85 â 93.
dc.identifier.citedreferenceGoldman R ( 2000 ): Fristoe M. Goldmanâ Fristoe test of articulation, 2.
dc.identifier.citedreferenceGraybiel AM ( 2005 ): The basal ganglia: Learning new tricks and loving it. Curr Opin Neurobiol 15: 638 â 644.
dc.identifier.citedreferenceHelie S, Ell SW, Ashby FG ( 2015 ): Learning robust corticoâ cortical associations with the basal ganglia: An integrative review. Cortex 64: 123 â 135.
dc.identifier.citedreferenceHickok G, Houde J, Rong F ( 2011 ): Sensorimotor integration in speech processing: Computational basis and neural organization. Neuron 69: 407 â 422.
dc.identifier.citedreferenceKell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, Giraud AL ( 2009 ): How the brain repairs stuttering. Brain 132: 2747 â 2760.
dc.identifier.citedreferenceLange N, Travers BG, Bigler ED, Prigge MB, Froehlich AL, Nielsen JA, Cariello AN, Zielinski BA, Anderson JS, Fletcher PT, Alexander AA, Lainhart JE ( 2015 ): Longitudinal volumetric brain changes in autism spectrum disorder ages 6â 35 years. Autism Res 8: 82 â 93.
dc.identifier.citedreferenceLevelt WJ ( 1993 ): Speaking: From Intention to Articulation. Cambridge, MA: MIT Press.
dc.identifier.citedreferenceLiu B, Zhu T, Zhong J ( 2015 ): Comparison of quality control software tools for diffusion tensor imaging. Magn Reson Imaging 33: 276 â 285.
dc.identifier.citedreferenceMori S, Wakana S, Van Zijl PC, Nagaeâ Poetscher LM ( 2005 ): MRI Atlas of Human White Matter. New York: Elsevier.
dc.identifier.citedreferenceNamasivayam AK, van Lieshout P, McIlroy WE, De Nil L ( 2009 ): Sensory feedback dependence hypothesis in persons who stutter. Hum Mov Sci 28: 688 â 707.
dc.identifier.citedreferenceNeef NE, Anwander A, Friederici AD ( 2015 ): The neurobiological grounding of persistent stuttering: From structure to function. Curr Neurol Neurosci Rep 15: 63.
dc.identifier.citedreferenceO’Neill J, Dong Z, Bansal R, Ivanov I, Hao X, Desai J, Pozzi E, Peterson BS ( 2017 ): Proton chemical shift imaging of the brain in pediatric and adult developmental stuttering. JAMA Psychiatry 74: 85 â 94.
dc.identifier.citedreferencePerkell JS ( 2012 ): Movement goals and feedback and feedforward control mechanisms in speech production. J Neurolinguistics 25: 382 â 407.
dc.identifier.citedreferencePierpaoli C, Walker L, Irfanoglu M, Barnett A, Basser P, Chang L, Koay C, Pajevic S, Rohde G, Sarlls J ( 2010 ): TORTOISE: An integrated software package for processing of diffusion MRI data. Book TORTOISE 18: 1597.
dc.identifier.citedreferencePinheiro JC ( 2005 ): Linear mixed effects models for longitudinal data. Encyclopedia of Biostatistics. doi: 10.1002/0470011815.b2a12037
dc.identifier.citedreferencePower JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE ( 2012 ): Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59: 2142 â 2154.
dc.identifier.citedreferenceRavizza SM, Ciranni MA ( 2002 ): Contributions of the prefrontal cortex and basal ganglia to set shifting. J Cogn Neurosci 14: 472 â 483.
dc.identifier.citedreferenceRees DI, Sabia JJ ( 2014 ): The kid’s speech: The effect of stuttering on human capital acquisition. Econ Educ Rev 38: 76 â 88.
dc.identifier.citedreferenceRiley GD, Bakker K ( 2009 ): Stuttering Severity Instrument: SSIâ 4. Proâ Ed.
dc.identifier.citedreferenceSchmahmann JD, Pandya D ( 2009 ): Fiber pathways of the brain. OUP USA.
dc.identifier.citedreferenceSchumann CM, Bloss CS, Barnes CC, Wideman GM, Carper RA, Akshoomoff N, Pierce K, Hagler D, Schork N, Lord C, Courchesne E ( 2010 ): Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci 30: 4419 â 4427.
dc.identifier.citedreferenceSchwarz CG, Reid RI, Gunter JL, Senjem ML, Przybelski SA, Zuk SM, Whitwell JL, Vemuri P, Josephs KA, Kantarci K, Thompson PM, Petersen RC, Jack CR, Jr, Alzheimer’s Disease Neuroimaging I ( 2014 ): Improved DTI registration allows voxelâ based analysis that outperforms tractâ based spatial statistics. NeuroImage 94: 65 â 78.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.