Show simple item record

Hydrophobic End‐Modulated Amino‐Acid‐Based Neutral Hydrogelators: Structure‐Specific Inclusion of Carbon Nanomaterials

dc.contributor.authorChoudhury, Pritam
dc.contributor.authorMandal, Deep
dc.contributor.authorBrahmachari, Sayanti
dc.contributor.authorDas, Prasanta Kumar
dc.date.accessioned2017-06-16T20:11:16Z
dc.date.available2017-06-16T20:11:16Z
dc.date.issued2016-04-04
dc.identifier.citationChoudhury, Pritam; Mandal, Deep; Brahmachari, Sayanti; Das, Prasanta Kumar (2016). "Hydrophobic End‐Modulated Amino‐Acid‐Based Neutral Hydrogelators: Structure‐Specific Inclusion of Carbon Nanomaterials." Chemistry – A European Journal 22(15): 5160-5172.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/137368
dc.description.abstractHydrophobic end‐modulated l‐phenylalanine‐containing triethylene glycol monomethyl ether tagged neutral hydrogelators (1–4) are developed. Investigations determine the gelators’ structure‐dependent inclusion of carbon nanomaterials (CNMs) in the self‐assembled fibrillar network (SAFIN). The gelators (1, 3, and 4) can immobilize water and aqueous buffer (pH 3–7) with a minimum gelator concentration of 10–15 mg mL−1. The hydrophobic parts of the gelators are varied from a long chain (C‐16) to an extended aromatic pyrenyl moiety, and their abilities to integrate 1 D and 2 D allotropes of carbon (i.e., single‐walled carbon nanotubes (SWNTs) and graphene oxide (GO), respectively) within the gel are investigated. Gelator 1, containing a long alkyl chain (C‐16), can include SWNTs, whereas the pyrene‐containing 4 can include both SWNTs and GO. Gelator 3 fails to incorporate SWNTs or GO owing to its slow rate of gelation and possibly a mismatch between the aggregated structure and CNMs. The involvement of various forces in self‐aggregated gelation and physicochemical changes occurring through CNM inclusion are examined by spectroscopic and microscopic techniques. The distinctive pattern of self‐assembly of gelators 1 and 4 through J‐ and H‐type aggregation might facilitate the structure‐specific CNM inclusion. Inclusion of SWNTs/GO within the hydrogel matrix results in a reinforcement in mechanical stiffness of the composites compared with that of the native hydrogels.Neutral hydrogelators with hydrophobicity variation upon going from a C‐16 alkyl chain to an extended aromatic moiety, pyrene, are developed. The C‐16‐containing gelator can include a 1 D allotrope of carbon (SWNT=single‐walled carbon nanotubes), and the pyrene‐containing gelator, with its additional π–π stacking interactions, can incorporate both 1 D and 2 D (GO=graphene oxide) allotropes (see figure).
dc.publisherWiley Periodicals, Inc.
dc.subject.otherself-assembly
dc.subject.othersoft nanocomposites
dc.subject.otherneutral gelators
dc.subject.otherhydrogels
dc.subject.othercarbon nanomaterials
dc.subject.otheramphiphiles
dc.titleHydrophobic End‐Modulated Amino‐Acid‐Based Neutral Hydrogelators: Structure‐Specific Inclusion of Carbon Nanomaterials
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137368/1/chem201504888.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137368/2/chem201504888_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137368/3/chem201504888-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/chem.201504888
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceO. C. Compton, S. T. Nguyen, Small 2010, 6, 711;
dc.identifier.citedreferenceS. Srinivasan, V. K. Praveen, R. Philip, A. Ajayaghosh, Angew. Chem. Int. Ed. 2008, 47, 5675; Angew. Chem. 2008, 120, 5759;
dc.identifier.citedreference 
dc.identifier.citedreferenceC. Maity, W. E. Hendriksen, J. H. van Esch, R. Eelkema, Angew. Chem. Int. Ed. 2015, 54, 998; Angew. Chem. 2015, 127, 1012;
dc.identifier.citedreferenceS. K. Mandal, D. Mandal, P. K. Das, ChemPlusChem 2015, DOI: 10.1002/cplu.201500457;
dc.identifier.citedreferenceS. K. Samanta, K. S. Subrahmanyam, S. Bhattacharya, C. N. R. Rao, Chem. Eur. J. 2012, 18, 2890;
dc.identifier.citedreferenceJ. Wu, A. Chen, M. Qin, R. Huang, G. Zhang, B. Xue, J. Wei, Y. Li, Y. Cao, W. Wang, Nanoscale 2015, 7, 1655.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339;
dc.identifier.citedreferenceM. Yoshida, N. Koumura, Y. Misawa, N. Tamaoki, H. Matsumoto, H. Kawanami, S. Kazaoui, N. Minami, J. Am. Chem. Soc. 2007, 129, 11039.
dc.identifier.citedreference 
dc.identifier.citedreferenceB. Escuder, J. F. Miravet, Langmuir 2006, 22, 7793;
dc.identifier.citedreferenceI. Laczkó, E. Vass, K. Soós, L. Fülöp, M. Zarándi, B. Penke, J. Pept. Sci. 2008, 14, 731;
dc.identifier.citedreferenceC. A. Bush, S. K. Sarkar, K. D. Kopple, Biochemistry 1978, 17, 4951.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Dong, B. Xu, J. Zhang, X. Tan, L. Wang, J. Chen, H. Lv, S. Wen, B. Li, L. Ye, B. Zou, W. Tian, Angew. Chem. Int. Ed. 2012, 51, 10782; Angew. Chem. 2012, 124, 10940;
dc.identifier.citedreferenceY. Hirano, Y. Tokuoka, N. Kawashima, Y. Ozaki, Vib. Spectrosc. 2007, 43, 86;
dc.identifier.citedreferenceA. D’Urso, M. E. Fragala, R. Purrello, Chem. Commun. 2012, 48, 8165.
dc.identifier.citedreferenceU. Maitra, S. Mukhopadhyay, A. Sarkar, P. Rao, S. S. Indi, Angew. Chem. Int. Ed. 2001, 40, 2281; Angew. Chem. 2001, 113, 2341.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. J. C. Fulford, W. E. Peel, Biochim. Biophys. Acta 1980, 598, 237;
dc.identifier.citedreferenceS. Bhattacharya, Y. K. Ghosh, Langmuir 2001, 17, 2067;
dc.identifier.citedreferenceS. Mukhopadhyay, I. G. Krishnamoorthy, U. Maitra, J. Phys. Chem. B 2003, 107, 2189.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Ma, K. Tu, L. M. Zhang, Biomacromolecules 2010, 11, 2204;
dc.identifier.citedreferenceD. M. Ryan, B. L. Nilsson, Polym. Chem. 2012, 3, 18.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. J. Wilson, S. J. Liliensiek, C. J. Murphy, W. L. Murphy, P. F. Nealey, Soft Matter 2012, 8, 390;
dc.identifier.citedreferenceD. Kalafatovic, M. Nobis, N. Javid, P. W. J. M. Frederix, K. I. Anderson, B. R. Saunders, R. V. Ulijn, Biomater. Sci. 2015, 3, 246.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. Caló, V. V. Khutoryanskiy, Eur. Polym. J. 2015, 65, 252;
dc.identifier.citedreferenceJ. Wang, Anal. Chim. Acta 1999, 399, 21.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. C. Beozzo, M. A. Alves-Rosa, S. H. Pulcinelli, C. V. Santilli, Materials 2013, 6, 1967;
dc.identifier.citedreferenceR. Kumar, K. Jayaramulu, T. K. Maji, C. N. R. Rao, Dalton Trans. 2014, 43, 7383;
dc.identifier.citedreferenceA. Chakrabarty, U. Maitra, J. Phys. Chem. B 2013, 117, 8039;
dc.identifier.citedreferenceP. K. Vemula, G. John, Chem. Commun. 2006, 2218.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. K. Samanta, S. Bhattacharya, J. Mater. Chem. 2012, 22, 25277;
dc.identifier.citedreferenceY. M. Abul-Haija, R. V. Ulijn, Biomacromolecules 2015, 16, 3473;
dc.identifier.citedreferenceJ. M. Poolman, J. Boekhoven, A. Besselink, A. G. L. Olive, J. H. van Esch, R. Eelkema, Nat. Protoc. 2014, 9, 977;
dc.identifier.citedreferenceB. Escuder, F. Rodríguez-Llansola, J. F. Miravet, New J. Chem. 2010, 34, 1044;
dc.identifier.citedreferenceJ. D. Decoppet, T. Moehl, S. S. Babkair, R. A. Alzubaydi, A. A. Ansari, S. S. Habib, S. M. Zakeeruddin, H. W. Schmidt, M. Grätzel, J. Mater. Chem. A 2014, 2, 15972.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Das, T. Kar, P. K. Das, Soft Matter 2012, 8, 2348;
dc.identifier.citedreferenceA. T. Haedler, K. Kreger, A. Issac, B. Wittmann, M. Kivala, N. Hammer, J. Köhler, H. W. Schmidt, R. Hildner, Nature 2015, 523, 196;
dc.identifier.citedreferenceI. Sittko, K. Kremser, M. Roth, S. Kuehne, S. Stuhr, J. C. Tiller, Polymer 2015, 64, 122;
dc.identifier.citedreferenceS. Bhattacharjee, S. K. Samanta, P. Moitra, K. Pramoda, R. Kumar, S. Bhattacharya, C. N. R. Rao, Chem. Eur. J. 2015, 21, 5467;
dc.identifier.citedreferenceC. Krumm, S. Harmuth, M. Hijazi, B. Neugebauer, A. L. Kampmann, H. Geltenpoth, A. Sickmann, J. C. Tiller, Angew. Chem. Int. Ed. 2014, 53, 3830; Angew. Chem. 2014, 126, 3908;
dc.identifier.citedreferenceJ. Gao, H. Wang, L. Wang, J. Wang, D. Kong, Z. Yang, J. Am. Chem. Soc. 2009, 131, 11286.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Mandal, S. K. Mandal, P. K. Das, Chem. Eur. J. 2015, 21, 12042;
dc.identifier.citedreferenceB. Xing, C. W. Yu, K. H. Chow, P. L. Ho, D. Fu, B. Xu, J. Am. Chem. Soc. 2002, 124, 14846;
dc.identifier.citedreferenceH. Kobayashi, A. Friggeri, K. Koumoto, M. Amaike, S. Shinkai, D. N. Reinhoudt, Org. Lett. 2002, 4, 1423;
dc.identifier.citedreferenceL. A. Estroff, A. D. Hamilton, Angew. Chem. Int. Ed. 2000, 39, 3447; Angew. Chem. 2000, 112, 3589.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. S. Hoffman, Adv. Drug Delivery Rev. 2012, 64, 18;
dc.identifier.citedreferenceJ. Bergera, M. Reista, J. M. Mayera, O. Feltb, N. A. Peppasc, R. Gurny, Eur. J. Pharm. Biopharm. 2004, 57, 19;
dc.identifier.citedreferenceS. Brahmachari, D. Das, P. K. Das, Chem. Commun. 2010, 46, 8386;
dc.identifier.citedreferenceF. Zhao, M. L. Ma, B. Xu, Chem. Soc. Rev. 2009, 38, 883;
dc.identifier.citedreferenceG. Liang, Z. Yang, R. Zhang, L. Li, Y. Fan, Y. Kuang, Y. Gao, T. Wang, W. W. Lu, B. Xu, Langmuir 2009, 25, 8419;
dc.identifier.citedreferenceY. Tian, H. Wang, Y. Liu, L. Mao, W. Chen, Z. Zhu, W. Liu, W. Zheng, Y. Zhao, D. Kong, Z. Yang, W. Zhang, Y. Shao, X. Jiang, Nano Lett. 2014, 14, 1439.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. S. Babu, V. K. Praveen, A. Ajayaghosh, Chem. Rev. 2014, 114, 1973;
dc.identifier.citedreferenceK. Naoi, S. Ishimoto, J. Miyamotoad, W. Naoi, Energy Environ. Sci. 2012, 5, 9363;
dc.identifier.citedreferenceG. Vilaça, B. Jousseaume, C. Mahieux, C. Belin, H. Cachet, M. C. Bernard, V. Vivier, T. Toupance, Adv. Mater. 2006, 18, 1073;
dc.identifier.citedreferenceH. Li, J. Choi, T. Nakanishi, Langmuir 2013, 29, 5394;
dc.identifier.citedreferenceD. Depan, A. P. Kumar, R. P. Singh, Acta Biomater. 2009, 5, 93.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Kar, S. K. Mandal, P. K. Das, Chem. Commun. 2012, 48, 8389;
dc.identifier.citedreferenceD. Mandal, T. Kar, P. K. Das, Chem. Eur. J. 2014, 20, 1349;
dc.identifier.citedreferenceR. Liu, S. M. Mahurin, C. Li, R. R. Unocic, J. C. Idrobo, H. Gao, S. J. Pennycook, S. Dai, Angew. Chem. Int. Ed. 2011, 50, 6799; Angew. Chem. 2011, 123, 6931;
dc.identifier.citedreferenceM. Tunckol, J. Durand, P. Serp, Carbon 2012, 50, 4303;
dc.identifier.citedreferenceX. Yang, G. Zhang, D. Zhang, J. Xiang, G. Yang, D. Zhu, Soft Matter 2011, 7, 3592;
dc.identifier.citedreferenceJ. Liu, G. Chen, M. Jiang, Macromolecules 2011, 44, 7682;
dc.identifier.citedreferenceM. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132;
dc.identifier.citedreferenceJ. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. M. D. Tascón, Langmuir 2008, 24, 10560;
dc.identifier.citedreferenceN. J. Greenfield, Nat. Protoc. 2007, 1, 2876;
dc.identifier.citedreferenceS. Dutta, A. Shome, S. Debnath, P. K. Das, Soft Matter 2009, 5, 1607.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.