Show simple item record

Overland flow resistances on varying slope gradients and partitioning on grassed slopes under simulated rainfall

dc.contributor.authorPan, Chengzhong
dc.contributor.authorMa, Lan
dc.contributor.authorWainwright, John
dc.contributor.authorShangguan, Zhouping
dc.date.accessioned2017-06-16T20:11:44Z
dc.date.available2017-06-16T20:11:44Z
dc.date.issued2016-04
dc.identifier.citationPan, Chengzhong; Ma, Lan; Wainwright, John; Shangguan, Zhouping (2016). "Overland flow resistances on varying slope gradients and partitioning on grassed slopes under simulated rainfall." Water Resources Research 52(4): 2490-2512.
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.urihttps://hdl.handle.net/2027.42/137376
dc.description.abstractIt is still unclear how slope steepness (S) and revegetation affect resistance (f) to overland flow. A series of experiments on runoff hydraulics was conducted on granular surfaces (bare soil and sandpaper) and grassed surfaces, including grass plots (GP), GP with litter (GL), and GP without leaves (GS) under simulated rainfall and inflow (30<Re<1400) with varying slopes ranging from 2.6% to 50%. The results show that the observed f based on a small‐size runoff plot under rainfall conditions tends to be overestimated due to the increase in flow rate, or Re (Reynolds number), with downward cross sections and a good f‐Re relation (f = KRe−1). There exists a good f‐Re relation for granular surfaces and a good f‐Fr relation (Fr, Froude number) for grass plots. A greater f occurred at the gentle and steep slopes for the granular surfaces, while f decreased with increasing slopes for the grass treatments. The different f‐S relations suggest that f is not a simple function of S. When Re≈1000, the sowing rye grass with level lines increased f by approximately 100 times and decreased bed shear stress to approximately 5%. The contribution of grass leaves, stems, litter, and grain surface to total resistance in the grass plots were averagely 52%, 32%, 16%, and 1%. The greater resistance from leaves may result from the leaves lying at the plot surface impacted by raindrop impact. These results are beneficial to understand the dynamics of runoff and erosion on hillslopes impacted by vegetation restoration.Key Points:Different relations between resistance and slope gradient exist on granular and grassed surfacesThe resistance contribution in grass plots follows leaves>stems>litter>soil grainGrass plantation greatly increases overland flow resistance and decreases erosion dynamics
dc.publisherMcGraw‐Hill
dc.publisherWiley Periodicals, Inc.
dc.subject.othersimulated rainfall
dc.subject.otherslope steepness
dc.subject.othergrass plot
dc.subject.otherresistance
dc.subject.otheroverland flow
dc.titleOverland flow resistances on varying slope gradients and partitioning on grassed slopes under simulated rainfall
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137376/1/wrcr21994_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137376/2/wrcr21994.pdf
dc.identifier.doi10.1002/2015WR018035
dc.identifier.sourceWater Resources Research
dc.identifier.citedreferenceProsser, I. P., W. E. Dietrich, and J. Stevenson ( 1995 ), Flow resistance and sediment transport by concentrated overland flow in a grassland valley, Geomorphology, 13, 71 – 86.
dc.identifier.citedreferenceMorgan, R. P. C. ( 1986 ), Soil Erosion and Conservation, Longman Group UK Ltd, Harlow, U. K.
dc.identifier.citedreferenceMorgan, R. P. C., K. McIntyre, A. W. Vickers, J. N. Quinton, and R. J. Rickson ( 1997 ), A rainfall simulation study of soil erosion on rangeland in Swaziland, Soil Technol., 11 ( 3 ), 291 – 299, doi: 10.1016/S0933-3630(97)00013-5.
dc.identifier.citedreferencePan, C. Z., and Z. P. Shangguan ( 2006 ), Runoff hydraulic characteristics and sediment generation in sloped grass plots under simulated rainfall conditions, J. Hydrol., 331, 178 – 185.
dc.identifier.citedreferencePan, C. Z., and Z. P. Shangguan ( 2007 ), Hydraulic characteristics of silt‐laden flow on different gradient grass plots and its mechanism of sediment retention [in Chinese with English abstract], Adv. Water Sci., 18 ( 4 ), 490 – 495.
dc.identifier.citedreferencePan, C. Z., Z. P. Shangguan, and T. W. Lei ( 2006 ), Influences of grass and moss on runoff and sediment yield on sloped loess surfaces under simulated rainfall, Hydrol. Processes, 20, 3815 – 3824.
dc.identifier.citedreferencePan, C. Z., L. Ma, and Z. P. Shangguan ( 2010 ), Effectiveness of grass strips in trapping suspended sediments from runoff, Earth Surf. Processes Landforms, 35, 1006 – 1013.
dc.identifier.citedreferenceParsons, A.J., A. D. Abrahams, and J. Wainwright ( 1994 ), On determining resistance to interrill overland flow, Water Resour. Res., 30, 3515 – 3521.
dc.identifier.citedreferenceParsons, A. J., J. Wainwright, A. D. Abrahams, and J. R. Simanton ( 1997 ), Distributed dynamic modelling of interrill overland flow, Hydrol. Processes, 11 ( 14 ), 1833 – 1859.
dc.identifier.citedreferencePierson, F. B., Jr., S. S. van Vactor, W. H. Blackbum, and J. C. Wood ( 1994 ), Incorporating small scale spatial variability into predictions of hydrologic response on sagebrush rangelands, in Variability in Rangeland, Water Erosion Processes, Soil Sci. Soc. Am. Spec. Publ., vol. 38, edited by W. H. Blackbum, pp. 23 – 34, Soil Science Society of America, Madison, Wis.
dc.identifier.citedreferenceRauws, G. ( 1988 ), Laboratory experiments on resistance to overland flow due to composite roughness, J. Hydrol., 103, 37 – 52.
dc.identifier.citedreferenceRoels, J. M. ( 1984 ), Flow resistance in concentrated overland flow on rough slope surfaces, Earth Surf. Processes Landforms, 9, 541 – 551.
dc.identifier.citedreferenceSavat, J. ( 1977 ), The hydraulics of sheet flow on a smooth surface and the effect of simulated rainfall, Earth Surf. Processes Landforms, 2, 125 – 140.
dc.identifier.citedreferenceSavat, J. ( 1980 ), Resistance to flow in rough supercritical sheet flow, Earth Surf. Processes Landforms, 5, 103 – 122, doi: 10.1002/esp.3760050202.
dc.identifier.citedreferenceSha, Y. Q. ( 1965 ), An Introduction to the Mechanics of Sediment Transport, China Ind. Press, Beijing.
dc.identifier.citedreferenceShen, H. W., and R. M. Li ( 1973 ), Rainfall effects on sheet flow over smooth surface, J. Hydraul. Div. Am. Soc. Civ. Eng., 99 ( 5 ), 771 – 792.
dc.identifier.citedreferenceSmith, M. W., N.J. Cox, and L. J., Bracken ( 2007 ), Applying flow resistance equations to overland flows, Prog. Phys. Geogr., 31, 363 – 387.
dc.identifier.citedreferenceTakken, I., and G. Govers ( 2000 ), Hydraulics of interrill overland flow on rough, bare soil surfaces, Earth Surf. Processes Landforms, 25, 1387 – 1402.
dc.identifier.citedreferenceThompson, A. M., B. N. Wilson, and B. J. Hansen ( 2004 ), Shear stress partitioning for idealized vegetated surfaces, Trans. ASAE, 47 ( 3 ), 701 – 709.
dc.identifier.citedreferenceWainwright, J., A. J. Parsons, and A. D. Abrahams ( 1999 ), Rainfall energy under creosotebush, J. Arid Environ., 43, 111 – 120.
dc.identifier.citedreferenceWainwright, J., Parsons, A. J., and A. D. Abrahams ( 2000 ), Plot‐scale studies of vegetation, overland flow and erosion interactions: Case studies from Arizona and New Mexico, Hydrol. Processes, 14 ( 5 ), 2921 – 2943.
dc.identifier.citedreferenceWeltz, M. A., A. B. Arslan, and L. J. Lane ( 1992 ), Hydraulic roughness coefficients for native rangelands, J. Irrig. Drain. Eng., 118 ( 5 ), 776 – 790.
dc.identifier.citedreferenceXu, X. Z., D. Q. Liu, H. W. Zhang, Z. D. Dong, and M. D. Zhu ( 2006 ), Laboratory rainfall simulation with controlled rainfall intensity and drainage [in Chinese with English abstract], J. Beijing For. Univ., 28 ( 5 ), 52 – 58.
dc.identifier.citedreferenceZhang, J. J., L., Na, H. B. Dong, and P. Wang ( 2008 ), Hydrological response to changes in vegetation covers of small watersheds on the Loess Plateau [in Chinese with English abstract], Acta Ecol. Sin., 28 ( 8 ), 3597 – 3605.
dc.identifier.citedreferenceAbrahams, A. D., and A. J. Parsons ( 1991 ), Resistance to overland flow on desert pavement and its implications for sediment transport modeling, Water Resour. Res., 27, 1827 – 1836.
dc.identifier.citedreferenceAbrahams, A. D. and A. J. Parsons ( 1994 ), Hydraulics of interrill overland flow on stone‐covered desert surfaces, Catena, 23, 111 – 140.
dc.identifier.citedreferenceAbrahams, A. D., A. J. Parsons, and S. H. Luk ( 1986 ), Resistance to overland flow on desert hillslopes, J. Hydrol., 50, 343 – 363.
dc.identifier.citedreferenceAbrahams, A. D., A. J. Parsons, and J. Wainwright ( 1994 ), Resistance to overland flow on semiarid grassland and shrubland hillslopes, Walnut Gulch, southern Arizona, J. Hydrol., 156, 431 – 446.
dc.identifier.citedreferenceAlexander, R. B., R. A. Smith, and G. E. Schwarz ( 2000 ), Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico, Nature, 403, 758 – 761, doi: 10.1038/35001562.
dc.identifier.citedreferenceAtkinson, J. F., A. D. Abrahams, C. Krishnan, and G. Li ( 2000 ), Shear stress partitioning and sediment transport by overland flow, J. Hydraul. Res., 38, 37 – 40.
dc.identifier.citedreferenceCerdà, A. ( 1998 ), The influence of geomorphological position and vegetation cover on the erosional and hydrological processes on a Mediterranean hillslope, Hydrol. Processes., 12, 661 – 671.
dc.identifier.citedreferenceChow, V. T. ( 1959 ), Open‐Channel Hydraulics, 679 pp., McGraw‐Hill, N. Y.
dc.identifier.citedreferenceEmmett, W. W. ( 1970 ), The hydraulics of overland flow on hillslopes, U.S. Geol. Surv. Prof. Pap., 662‐A, A‐1 ‐– A‐68.
dc.identifier.citedreferenceFox, D. M., and R. B. Bryan ( 2000 ), The relationship of soil loss by interrill erosion to slope gradient, Catena, 38 ( 3 ), 211 – 222, doi: 10.1016/S0341-8162(99)00072-7.
dc.identifier.citedreferenceGabarrón‐Galeote, M. A., J. F. Martínez‐Murillo, M. A. Quesada, and J. D. Ruiz‐Sinoga ( 2013 ), Seasonal changes in the soil hydrological and erosive response depending on aspect, vegetation type and soil water repellency in different Mediterranean micro environments, Solid Earth, 4, 497 – 509, doi: 10.5194/se-4-497-2013.
dc.identifier.citedreferenceGilley, J. E., and S. C. Finkner ( 1991 ), Hydraulic roughness coefficients as affected by random roughness, Trans. ASAE, 34 ( 3 ), 897 – 903.
dc.identifier.citedreferenceGilley, J. E., and E. R. Kottwitz ( 1994 ), Darcy‐Weisbach roughness coefficients for selected crops, Trans. ASAE, 37 ( 2 ), 467 – 471.
dc.identifier.citedreferenceGilley, J. E., D. C. Flanagan, E. R. Kottwitz, and M. A. Weltz ( 1992 ), Darcy‐Weisbach roughness coefficients for overland flow, in Overland Flow Hydraulics and Erosion Mechanics, edited by A. J. Parsons and A. D. Abrahams, pp. 25 – 52, UCL Press, London, U. K.
dc.identifier.citedreferenceHirsch, P. J. ( 1996 ), Hydraulic resistance to overland flow on semiarid hillslopes: A physical simulation, PhD dissertation, State Univ. of New York at Buffalo, Buffalo.
dc.identifier.citedreferenceHolden, J., M. J. Kirkby, S. N. Lane, D. G. Milledge, C. J. Brookes, V. Holden, and A. T. McDonald ( 2008 ), Overland flow velocity and roughness properties in peatlands, Water Resour. Res., 44, W06415, doi: 10.1029/2007WR006052.
dc.identifier.citedreferenceHorton, R. E., H. R. Leach, and R. Van Vliet ( 1934 ), Laminar sheet flow, Trans. AGU, 2, 393 – 404.
dc.identifier.citedreferenceHou, X. L., and C. X. Du ( 1985 ), Runoff and soil loss under different vegetation cover plots [in Chinese with English abstract], Soil Conserv. Bull., 5, 35 – 37.
dc.identifier.citedreferenceJiang, D. S. ( 1997 ), Soil loss and its controlling mode on the loess plateau [in Chinese with English abstract], China’s Water Conserv. and Hydropowe Press, Beijing.
dc.identifier.citedreferenceJulien, P. Y., and D. M. Hartley ( 1986 ), Formation of roll‐waves in laminar sheet flow, J. Hydraul. Res., 24 ( 1 ), 5 – 17.
dc.identifier.citedreferenceKim, J., V. Y. Ivanov, and N. D. Katopodes ( 2012 ), Hydraulic resistance to overland flow on surfaces with partially submerged vegetation, Water Resour. Res., 48, W10540, doi: 10.1029/2012WR012047.
dc.identifier.citedreferenceKinnell, P. I. A. ( 1991 ), The effect of flow depth on sediment transport induced by raindrops impacting shallow flows, Trans. ASAE, 34, 161 – 168.
dc.identifier.citedreferenceLawrence, D. S. L. ( 1997 ), Macroscale surface roughness and frictional resistance in overland flow, Earth Surf. Processes Landforms, 22 ( 4 ), 365 – 382.
dc.identifier.citedreferenceLawrence, D. S. L. ( 2000 ), Hydraulic resistance in overland flow during partial and marginal surface inundation: Experimental observations and modeling, Water Resour. Res., 36, 2381 – 2393.
dc.identifier.citedreferenceLiu, Q. Q., L. Chen, J. C. Li, V. P. Singh ( 2005 ), Roll waves in overland flow, J. Hydrol. Eng., 10 ( 2 ), 110 – 117.
dc.identifier.citedreferenceLiu, X. Y., S. T. Yang, X. Y., Li, X. Zhou, Y. Luo, and S. Z. Dang ( 2015 ), The current vegetation restoration effect and its influence mechanism on the sediment and runoff yield in severe erosion area of Yellow River Basin [in Chinese with English abstract], Sci.Sin. Tech., 45, 1052 – 1059, doi: 10.1360/N092015-00028.
dc.identifier.citedreferenceLu, K. X., and Z. B. Li ( 2002 ), Theoretical study on formation mechanism of erosion holes of beginning of rill erosion development on loess slopes [in Chinese with English abstract], J. Soil Water Conserv., 16 ( 1 ), 35 – 38.
dc.identifier.citedreferenceMa, L., C. Z. Pan, Y. G. Teng, and Z. P. Shangguan ( 2013 ), The performance of grass filter strips in controlling high‐concentration suspended sediment from overland flow under rainfall/non‐rainfall conditions, Earth Surf. Processes Landforms, 38, 1523 – 1534.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.