Show simple item record

A Boiling‐Water‐Stable, Tunable White‐Emitting Metal–Organic Framework from Soft‐Imprint Synthesis

dc.contributor.authorHe, Jun
dc.contributor.authorHuang, Jian
dc.contributor.authorHe, Yonghe
dc.contributor.authorCao, Peng
dc.contributor.authorZeller, Matthias
dc.contributor.authorHunter, Allen D.
dc.contributor.authorXu, Zhengtao
dc.date.accessioned2017-06-16T20:13:29Z
dc.date.available2017-06-16T20:13:29Z
dc.date.issued2016-01
dc.identifier.citationHe, Jun; Huang, Jian; He, Yonghe; Cao, Peng; Zeller, Matthias; Hunter, Allen D.; Xu, Zhengtao (2016). "A Boiling‐Water‐Stable, Tunable White‐Emitting Metal–Organic Framework from Soft‐Imprint Synthesis." Chemistry – A European Journal 22(5): 1597-1601.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/137455
dc.description.abstractA new avenue for making porous frameworks has been developed by borrowing an idea from molecularly imprinted polymers (MIPs). In lieu of the small molecules commonly used as templates in MIPs, soft metal components, such as CuI, are used to orient the molecular linker and to leverage the formation of the network. Specifically, a linear dicarboxylate linker with thioether side groups reacted simultaneously with Ln3+ ions and CuI, leading to a bimetallic net featuring strong, chemically hard Eu3+–carboxylate links, as well as soft, thioether‐bound Cu2I2 clusters. The CuI block imparts water stability to the host; with the tunable luminescence from the lanthanide ions, this creates the first white‐emitting MOF that is stable in boiling water. The Cu2I2 block also readily reacts with H2S, and enables sensitive colorimetric detection while the host net remains intact.White light/white heat: A porous metal–organic framework, inspired by conceptually crosscutting the molecular imprint of polymers and the template of zeolites, emits white light in boiling water. The MOF incorporates an effective hard‐and‐soft divide, in which the EuIII–carboxylate framework holds up the primary grid, whereas the imbedded soft CuI block, like a template, can be dislodged (e.g., by reacting with H2S) from the surrounding sulfur donors while the host net remains intact.
dc.publisherJohn Wiley & Sons
dc.subject.otherhost–guest systems
dc.subject.otherimprinting
dc.subject.othermetal–organic frameworks
dc.subject.othersensors
dc.subject.othertemplate synthesis
dc.titleA Boiling‐Water‐Stable, Tunable White‐Emitting Metal–Organic Framework from Soft‐Imprint Synthesis
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137455/1/chem201504941-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137455/2/chem201504941.pdf
dc.identifier.doi10.1002/chem.201504941
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferencefor a review on water-stable MOFs, see: N. C. Burtch, H. Jasuja, K. S. Walton, Chem. Rev. 2014, 114, 10575 – 10612.
dc.identifier.citedreferenceX. Rao, Q. Huang, X. Yang, Y. Cui, Y. Yang, C. Wu, B. Chen, G. Qian, J. Mater. Chem. 2012, 22, 3210 – 3214.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. Liu, Y. Fang, G. Z. Wei, S. J. Teat, K. Xiong, Z. Hu, W. P. Lustig, J. Li, J. Am. Chem. Soc. 2015, 137, 9400 – 9408;
dc.identifier.citedreferenceJ. Chen, Q. Zhang, Z.-F. Liu, S.-H. Wang, Y. Xiao, R. Li, J.-G. Xu, Y.-P. Zhao, F.-K. Zheng, G.-C. Guo, Dalton Trans. 2015, 44, 10089 – 10096;
dc.identifier.citedreferenceL. Chen, C. Yan, M. Pan, Y.-Z. Fan, L.-Y. Zhang, S.-Y. Yin, Y.-J. Hou, K. Wu, J.-J. Jiang, C.-Y. Su, New J. Chem. 2015, 39, 5287 – 5292;
dc.identifier.citedreferenceY. Cui, T. Song, J. Yu, Y. Yang, Z. Wang, G. Qian, Adv. Funct. Mater. 2015, 25, 4796 – 4802;
dc.identifier.citedreferenceW. Xie, S.-R. Zhang, D.-Y. Du, J.-S. Qin, S.-J. Bao, J. Li, Z.-M. Su, W.-W. He, Q. Fu, Y.-Q. Lan, Inorg. Chem. 2015, 54, 3290 – 3296;
dc.identifier.citedreferenceY. Zhou, B. Yan, Nanoscale 2015, 7, 4063 – 4069;
dc.identifier.citedreferenceS. Zou, Q. Li, S. Du, RSC Adv. 2015, 5, 34936 – 34941;
dc.identifier.citedreferenceJ. He, M. Zeller, A. D. Hunter, Z. Xu, J. Am. Chem. Soc. 2012, 134, 1553 – 1559;
dc.identifier.citedreferenceW. Ki, J. Li, J. Am. Chem. Soc. 2008, 130, 8114 – 8115.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. K. Bae, C. H. Heo, D. J. Choi, D. Sen, E.-H. Joe, B. R. Cho, H. M. Kim, J. Am. Chem. Soc. 2013, 135, 9915 – 9923;
dc.identifier.citedreferenceN. Kumar, V. Bhalla, M. Kumar, Coord. Chem. Rev. 2013, 257, 2335 – 2347;
dc.identifier.citedreferenceG.-J. Mao, T.-T. Wei, X.-X. Wang, S.-y. Huan, D.-Q. Lu, J. Zhang, X.-B. Zhang, W. Tan, G.-L. Shen, R.-Q. Yu, Anal. Chem. 2013, 85, 7875 – 7881;
dc.identifier.citedreferenceL. A. Montoya, T. F. Pearce, R. J. Hansen, L. N. Zakharov, M. D. Pluth, J. Org. Chem. 2013, 78, 6550 – 6557;
dc.identifier.citedreferenceH. Zhang, P. Wang, G. Chen, H.-Y. Cheung, H. Sun, Tetrahedron Lett. 2013, 54, 4826 – 4829;
dc.identifier.citedreferenceF. Zheng, M. Wen, F. Zeng, S. Wu, Polymer 2013, 54, 5691 – 5697;
dc.identifier.citedreferenceL. A. Montoya, M. D. Pluth, Chem. Commun. 2012, 48, 4767 – 4769;
dc.identifier.citedreferenceV. S. Lin, C. J. Chang, Curr. Opin. Chem. Biol. 2012, 16, 595 – 601;
dc.identifier.citedreferenceH. Peng, W. Chen, Y. Cheng, L. Hakuna, R. Strongin, B. Wang, Sensors 2012, 12, 15907 – 15946;
dc.identifier.citedreferenceA. R. Lippert, E. J. New, C. J. Chang, J. Am. Chem. Soc. 2011, 133, 10078 – 10080.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. L. Bowen, P. Manesiotis, C. J. Allender, Mol. Imprinting 2013, 1, 35 – 40;
dc.identifier.citedreferenceC. Alexander, S. Andersson Hakan, I. Andersson Lars, J. Ansell Richard, N. Kirsch, A. Nicholls Ian, J. O’Mahony, J. Whitcombe Michael, J. Mol. Recognit. 2006, 19, 106 – 180;
dc.identifier.citedreferenceG. Wulff, Chem. Rev. 2002, 102, 1 – 27;
dc.identifier.citedreferenceG. Wulff, A. Sarhan, Angew. Chem. Int. Ed. Engl. 1972, 11, 341; Angew. Chem. 1972, 84, 364.
dc.identifier.citedreference 
dc.identifier.citedreferenceQ. Lin, X. Bu, C. Mao, X. Zhao, K. Sasan, P. Feng, J. Am. Chem. Soc. 2015, 137, 6184 – 6187;
dc.identifier.citedreferenceH.-Y. Lin, C.-Y. Chin, H.-L. Huang, W.-Y. Huang, M.-J. Sie, L.-H. Huang, Y.-H. Lee, C.-H. Lin, K.-H. Lii, X. Bu, S.-L. Wang, Science 2013, 339, 811 – 813;
dc.identifier.citedreferenceR. Simancas, D. Dari, N. Velamazan, M. T. Navarro, A. Cantin, J. L. Jorda, G. Sastre, A. Corma, F. Rey, Science 2010, 330, 1219 – 1222;
dc.identifier.citedreferenceA. Jackowski, S. I. Zones, S.-J. Hwang, A. W. Burton, J. Am. Chem. Soc. 2009, 131, 1092 – 1100;
dc.identifier.citedreferenceA. Corma, M. J. Diaz-Cabanas, J. L. Jorda, F. Rey, G. Sastre, K. G. Strohmaier, J. Am. Chem. Soc. 2008, 130, 16482 – 16483;
dc.identifier.citedreferenceP. Feng, X. Bu, N. Zheng, Acc. Chem. Res. 2005, 38, 293 – 303;
dc.identifier.citedreferenceS. Ekambaram, S. C. Sevov, Angew. Chem. Int. Ed. 1999, 38, 372 – 375;
dc.identifier.citedreferenceD. J. Chesnut, D. Hagrman, P. J. Zapf, R. P. Hammond, R. LaDuca, R. C. Haushalter, J. Zubieta, Coord. Chem. Rev. 1999, 190–192, 737 – 769.
dc.identifier.citedreference 
dc.identifier.citedreferenceY.-B. Zhang, H. Furukawa, N. Ko, W. Nie, H. J. Park, S. Okajima, K. E. Cordova, H. Deng, J. Kim, O. M. Yaghi, J. Am. Chem. Soc. 2015, 137, 2641 – 2650;
dc.identifier.citedreferenceK. Manna, T. Zhang, F. X. Greene, W. Lin, J. Am. Chem. Soc. 2015, 137, 2665 – 2673;
dc.identifier.citedreferenceM. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, M. Dinca, Angew. Chem. Int. Ed. 2015, 54, 4349 – 4352; Angew. Chem. 2015, 127, 4423 – 4426;
dc.identifier.citedreferenceB. Li, M. Chrzanowski, Y. Zhang, S. Ma, Coord. Chem. Rev. 2016, 307, 106 – 129;
dc.identifier.citedreferenceY. Cui, F. Zhu, B. Chen, G. Qian, Chem. Commun. 2015, 51, 7420 – 7431;
dc.identifier.citedreferenceJ. Cui, Z. Xu, Chem. Commun. 2014, 50, 3986 – 3988;
dc.identifier.citedreferenceZ. Xu, Coord. Chem. Rev. 2006, 250, 2745 – 2757;
dc.identifier.citedreferenceC.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940 – 8941;
dc.identifier.citedreferenceO. M. Yaghi, G. M. Li, H. L. Li, Nature 1995, 378, 703 – 706;
dc.identifier.citedreferenceG. B. Gardner, D. Venkataraman, J. S. Moore, S. Lee, Nature 1995, 374, 792 – 795;
dc.identifier.citedreferenceB. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1989, 111, 5962 – 5964.
dc.identifier.citedreferenceN. W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2005, 38, 176 – 182.
dc.identifier.citedreferenceD. Bradshaw, T. J. Prior, E. J. Cussen, J. B. Claridge, M. J. Rosseinsky, J. Am. Chem. Soc. 2004, 126, 6106 – 6114.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. C. Tella, O. A. Ameen, P. A. Ajibade, L. O. Alimi, J. Porous Mater. 2015, 22, 1599 - 1605;
dc.identifier.citedreferenceT. Friščić, D. G. Reid, I. Halasz, R. S. Stein, R. E. Dinnebier, M. J. Duer, Angew. Chem. Int. Ed. 2010, 49, 712 – 715; Angew. Chem. 2010, 122, 724 – 727.
dc.identifier.citedreference 
dc.identifier.citedreferenceB. Gui, K.-K. Yee, Y.-L. Wong, S.-M. Yiu, M. Zeller, C. Wang, Z. Xu, Chem. Commun. 2015, 51, 6917 – 6920;
dc.identifier.citedreferenceM. Zha, J. Liu, Y.-L. Wong, Z. Xu, J. Mater. Chem. A 2015, 3, 3928 – 3934;
dc.identifier.citedreferenceH. Fei, S. M. Cohen, J. Am. Chem. Soc. 2015, 137, 2191 – 2194;
dc.identifier.citedreferenceL. Sun, C. H. Hendon, M. A. Minier, A. Walsh, M. Dinca, J. Am. Chem. Soc. 2015, 137, 6164 – 6167;
dc.identifier.citedreferenceZ. Xu, Metal–organic Frameworks: Semiconducting Frameworks, John Wiley & Sons, Ltd, Chichester, 2014;
dc.identifier.citedreferenceJ. Cui, Y.-L. Wong, M. Zeller, A. D. Hunter, Z. Xu, Angew. Chem. Int. Ed. 2014, 53, 14438 – 14442; Angew. Chem. 2014, 126, 14666 – 14670;
dc.identifier.citedreferenceL. Sun, T. Miyakai, S. Seki, M. Dincă, J. Am. Chem. Soc. 2013, 135, 8185 – 8188;
dc.identifier.citedreferenceS. Pullen, H. Fei, A. Orthaber, S. M. Cohen, S. Ott, J. Am. Chem. Soc. 2013, 135, 16997 – 17003;
dc.identifier.citedreferenceK.-K. Yee, N. Reimer, J. Liu, S.-Y. Cheng, S.-M. Yiu, J. Weber, N. Stock, Z. Xu, J. Am. Chem. Soc. 2013, 135, 7795 – 7798;
dc.identifier.citedreferenceJ. He, M. Zha, J. Cui, M. Zeller, A. D. Hunter, S.-M. Yiu, S.-T. Lee, Z. Xu, J. Am. Chem. Soc. 2013, 135, 7807 – 7810;
dc.identifier.citedreferenceA. D. Burrows, C. G. Frost, M. F. Mahon, C. Richardson, Chem. Commun. 2009, 4218 – 4220;
dc.identifier.citedreferenceJ. He, C. Yang, Z. Xu, M. Zeller, A. D. Hunter, J. Lin, J. Solid State Chem. 2009, 182, 1821 – 1826;
dc.identifier.citedreferenceX.-P. Zhou, Z. Xu, M. Zeller, A. D. Hunter, S. S.-Y. Chui, C.-M. Che, Inorg. Chem. 2008, 47, 7459 – 7461.
dc.identifier.citedreferenceX.-P. Zhou, Z. Xu, M. Zeller, A. D. Hunter, S. S.-Y. Chui, C.-M. Che, J. Lin, Inorg. Chem. 2010, 49, 7629 – 7631.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. M. Bloch, A. Burgun, C. J. Coghlan, R. Lee, M. L. Coote, C. J. Doonan, C. J. Sumby, Nat. Chem. 2014, 6, 906 – 912;
dc.identifier.citedreferenceZ. Wang, S. M. Cohen, Chem. Soc. Rev. 2009, 38, 1315 – 1329;
dc.identifier.citedreferenceZ. Xu, S. Lee, Y.-H. Kiang, A. B. Mallik, N. Tsomaia, K. T. Mueller, Adv. Mater. 2001, 13, 637 – 641.
dc.identifier.citedreferenceCrystal data for 1: EuC 33 H 25 O 6 S 3; M r =765.67; Fddd; a =7.011(2), b =34.41(1), c =55.94(2) Å; α = β = γ =90°; V =13494 (7) Å 3; Z =16; ρ=1.508 g cm −3; GOF=1.078; R 1 =0.0452; wR 2 =0.1246 [ I >2 σ ( I )]. CCDC 1421986 contains the crystallographic data for 1.
dc.identifier.citedreferenceCrystal data for 2 -Eu: EuCuIC 33 H 26 O 7 S 2; M r =973.12; P 1 ‾; a =9.116(3), b =15.128(4), c =18.517(5) Å; α =102.480(7), β =99.371(9), γ =106.819(7)°; V =2316(1) Å 3; Z =2; ρ=1.395 g cm −3; GOF=1.031; R 1 =0.0874; wR 2 =0.2115 [ I >2 σ ( I )]. CCDC 1422000 contains the crystallographic data for 2 -Eu.
dc.identifier.citedreference 
dc.identifier.citedreferenceFor a recent Eu-based water-stable MOF, see: D.-X. Xue, Y. Belmabkhout, O. Shekhah, H. Jiang, K. Adil, A. J. Cairns, M. Eddaoudi, J. Am. Chem. Soc. 2015, 137, 5034 – 5040;
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.