Show simple item record

Inflammasome assembly in the chorioamniotic membranes during spontaneous labor at term

dc.contributor.authorGomez‐lopez, Nardhy
dc.contributor.authorRomero, Roberto
dc.contributor.authorXu, Yi
dc.contributor.authorGarcia‐flores, Valeria
dc.contributor.authorLeng, Yaozhu
dc.contributor.authorPanaitescu, Bogdan
dc.contributor.authorMiller, Derek
dc.contributor.authorAbrahams, Vikki M.
dc.contributor.authorHassan, Sonia S.
dc.date.accessioned2017-06-16T20:14:23Z
dc.date.available2018-07-09T17:42:25Zen
dc.date.issued2017-05
dc.identifier.citationGomez‐lopez, Nardhy ; Romero, Roberto; Xu, Yi; Garcia‐flores, Valeria ; Leng, Yaozhu; Panaitescu, Bogdan; Miller, Derek; Abrahams, Vikki M.; Hassan, Sonia S. (2017). "Inflammasome assembly in the chorioamniotic membranes during spontaneous labor at term." American Journal of Reproductive Immunology 77(5): n/a-n/a.
dc.identifier.issn1046-7408
dc.identifier.issn1600-0897
dc.identifier.urihttps://hdl.handle.net/2027.42/137494
dc.publisherWiley Periodicals, Inc.
dc.subject.otherintraâ amniotic infection/inflammation
dc.subject.otheracute chorioamnionitis
dc.subject.otherASC speck
dc.subject.othercaspaseâ 1
dc.subject.otherinterleukinâ 1 beta
dc.subject.otherapoptosisâ associated speckâ like protein containing a CARD (ASC)
dc.titleInflammasome assembly in the chorioamniotic membranes during spontaneous labor at term
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137494/1/aji12648.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137494/2/aji12648_am.pdf
dc.identifier.doi10.1111/aji.12648
dc.identifier.sourceAmerican Journal of Reproductive Immunology
dc.identifier.citedreferenceRomero R, Gomez R, Galasso M, et al. Macrophage inflammatory proteinâ 1 alpha in term and preterm parturition: effect of microbial invasion of the amniotic cavity. Am J Reprod Immunol. 1994; 32: 108 â 113.
dc.identifier.citedreferenceEsplin MS, Romero R, Chaiworapongsa T, et al. Amniotic fluid levels of immunoreactive monocyte chemotactic proteinâ 1 increase during term parturition. J Matern Fetal Neonatal Med. 2003; 14: 51 â 56.
dc.identifier.citedreferenceAthayde N, Romero R, Maymon E, et al. A role for the novel cytokine RANTES in pregnancy and parturition. Am J Obstet Gynecol. 1999; 181: 989 â 994.
dc.identifier.citedreferenceGotsch F, Romero R, Kusanovic JP, et al. The antiâ inflammatory limb of the immune response in preterm labor, intraâ amniotic infection/inflammation, and spontaneous parturition at term: a role for interleukinâ 10. J Matern Fetal Neonatal Med. 2008; 21: 529 â 547.
dc.identifier.citedreferenceHamill N, Romero R, Gotsch F, et al. Exodusâ 1 (CCL20): evidence for the participation of this chemokine in spontaneous labor at term, preterm labor, and intrauterine infection. J Perinat Med. 2008; 36: 217 â 227.
dc.identifier.citedreferenceKeelan JA, Blumenstein M, Helliwell RJ, Sato TA, Marvin KW, Mitchell MD. Cytokines, prostaglandins and parturitionâ a review. Placenta 2003; 24 ( Suppl A ): S33 â S46.
dc.identifier.citedreferenceMartinezâ Varea A, Romero R, Xu Y, et al. Clinical chorioamnionitis at term VII: the amniotic fluid cellular immune response. J Perinat Med. 2016; doi: 10.1515/jpmâ 2016â 0225. [Epub ahead of print].
dc.identifier.citedreferenceKeelan JA, Marvin KW, Sato TA, Coleman M, McCowan LM, Mitchell MD. Cytokine abundance in placental tissues: evidence of inflammatory activation in gestational membranes with term and preterm parturition. Am J Obstet Gynecol. 1999; 181: 1530 â 1536.
dc.identifier.citedreferenceGomezâ Lopez N, Vegaâ Sanchez R, Castilloâ Castrejon M, Romero R, Cubeiroâ Arreola K, Vadilloâ Ortega F. Evidence for a role for the adaptive immune response in human term parturition. Am J Reprod Immunol. 2013; 69: 212 â 230.
dc.identifier.citedreferenceRomero R, Mazor M, Tartakovsky B. Systemic administration of interleukinâ 1 induces preterm parturition in mice. Am J Obstet Gynecol. 1991; 165: 969 â 971.
dc.identifier.citedreferenceGravett MG, Witkin SS, Haluska GJ, Edwards JL, Cook MJ, Novy MJ. An experimental model for intraamniotic infection and preterm labor in rhesus monkeys. Am J Obstet Gynecol. 1994; 171: 1660 â 1667.
dc.identifier.citedreferenceWitkin SS, Gravett MG, Haluska GJ, Novy MJ. Induction of interleukinâ 1 receptor antagonist in rhesus monkeys after intraamniotic infection with group B streptococci or interleukinâ 1 infusion. Am J Obstet Gynecol. 1994; 171: 1668 â 1672.
dc.identifier.citedreferenceRomero R, Durum S, Dinarello CA, Oyarzun E, Hobbins JC, Mitchell MD. Interleukinâ 1 stimulates prostaglandin biosynthesis by human amnion. Prostaglandins. 1989; 37: 13 â 22.
dc.identifier.citedreferenceHertelendy F, Romero R, Molnar M, Todd H, Baldassare JJ. Cytokineâ initiated signal transduction in human myometrial cells. Am J Reprod Immunol. 1993; 30: 49 â 57.
dc.identifier.citedreferenceHertelendy F, Rastogi P, Molnar M, Romero R. Interleukinâ 1betaâ induced prostaglandin E2 production in human myometrial cells: role of a pertussis toxinâ sensitive component. Am J Reprod Immunol. 2001; 45: 142 â 147.
dc.identifier.citedreferenceBelt AR, Baldassare JJ, Molnar M, Romero R, Hertelendy F. The nuclear transcription factor NFâ kappaB mediates interleukinâ 1betaâ induced expression of cyclooxygenaseâ 2 in human myometrial cells. Am J Obstet Gynecol. 1999; 181: 359 â 366.
dc.identifier.citedreferenceWatari M, Watari H, DiSanto ME, Chacko S, Shi GP, Strauss JF 3rd. Proâ inflammatory cytokines induce expression of matrixâ metabolizing enzymes in human cervical smooth muscle cells. Am J Pathol. 1999; 154: 1755 â 1762.
dc.identifier.citedreferencePineles BL, Romero R, Montenegro D, et al. â The inflammasomeâ in human parturition. Reprod Sci. 2007; 14: 59A.
dc.identifier.citedreferenceGotsch F, Romero R, Chaiworapongsa T, et al. Evidence of the involvement of caspaseâ 1 under physiologic and pathologic cellular stress during human pregnancy: a link between the inflammasome and parturition. J Matern Fetal Neonatal Med. 2008; 21: 605 â 616.
dc.identifier.citedreferenceYoung A, Thomson AJ, Ledingham M, Jordan F, Greer IA, Norman JE. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod. 2002; 66: 445 â 449.
dc.identifier.citedreferenceOsman I, Young A, Ledingham MA, et al. Leukocyte density and proâ inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod. 2003; 9: 41 â 45.
dc.identifier.citedreferenceHamilton SA, Tower CL, Jones RL. Identification of chemokines associated with the recruitment of decidual leukocytes in human labour: potential novel targets for preterm labour. PLoS ONE. 2013; 8: e56946.
dc.identifier.citedreferenceStephen GL, Lui S, Hamilton SA, et al. Transcriptomic profiling of human choriodecidua during term labor: inflammation as a key driver of labor. Am J Reprod Immunol. 2015; 73: 36 â 55.
dc.identifier.citedreferenceGomezâ Lopez N, Tong WC, Arenasâ Hernandez M, et al. Chemotactic activity of gestational tissues through late pregnancy, term labor, and RU486â induced preterm labor in Guinea pigs. Am J Reprod Immunol. 2015; 73: 341 â 352.
dc.identifier.citedreferenceSvenssonâ Arvelund J, Ernerudh J. The Role of Macrophages in Promoting and Maintaining Homeostasis at the Fetalâ Maternal Interface. Am J Reprod Immunol. 2015; 74: 100 â 109.
dc.identifier.citedreferenceXu Y, Romero R, Miller D, et al. An M1â like Macrophage Polarization in Decidual Tissue during Spontaneous Preterm Labor That Is Attenuated by Rosiglitazone Treatment. J Immunol. 2016; 196: 2476 â 2491.
dc.identifier.citedreferenceNing F, Liu H, Lash GE. The Role of Decidual Macrophages During Normal and Pathological Pregnancy. Am J Reprod Immunol. 2016; 75: 298 â 309.
dc.identifier.citedreferenceRomero R, Wu YK, Brody DT, Oyarzun E, Duff GW, Durum SK. Human decidua: a source of interleukinâ 1. Obstet Gynecol. 1989; 73: 31 â 34.
dc.identifier.citedreferenceMartinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proILâ beta. Mol Cell. 2002; 10: 417 â 426.
dc.identifier.citedreferenceAgostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an ILâ 1betaâ processing inflammasome with increased activity in Muckleâ Wells autoinflammatory disorder. Immunity. 2004; 20: 319 â 325.
dc.identifier.citedreferencePetrilli V, Papin S, Tschopp J. The inflammasome. Curr Biol. 2005; 15: R581.
dc.identifier.citedreferenceOgura Y, Sutterwala FS, Flavell RA. The inflammasome: first line of the immune response to cell stress. Cell. 2006; 126: 659 â 662.
dc.identifier.citedreferenceStutz A, Golenbock DT, Latz E. Inflammasomes: too big to miss. J Clin Invest. 2009; 119: 3502 â 3511.
dc.identifier.citedreferenceFranchi L, Eigenbrod T, Munozâ Planillo R, Nunez G. The inflammasome: a caspaseâ 1â activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009; 10: 241 â 247.
dc.identifier.citedreferenceJha S, Ting JP. Inflammasomeâ associated nucleotideâ binding domain, leucineâ rich repeat proteins and inflammatory diseases. J Immunol. 2009; 183: 7623 â 7629.
dc.identifier.citedreferencePedra JH, Cassel SL, Sutterwala FS. Sensing pathogens and danger signals by the inflammasome. Curr Opin Immunol. 2009; 21: 10 â 16.
dc.identifier.citedreferenceLamkanfi M, Dixit VM. Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol. 2011; 187: 597 â 602.
dc.identifier.citedreferencevan de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA. Inflammasome activation and ILâ 1beta and ILâ 18 processing during infection. Trends Immunol. 2011; 32: 110 â 116.
dc.identifier.citedreferenceFranchi L, Munozâ Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 2012; 13: 325 â 332.
dc.identifier.citedreferenceLatz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013; 13: 397 â 411.
dc.identifier.citedreferenceVanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 2015; 25: 308 â 315.
dc.identifier.citedreferenceGuo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015; 21: 677 â 687.
dc.identifier.citedreferenceMasumoto J, Taniguchi S, Ayukawa K, et al. ASC, a novel 22â kDa protein, aggregates during apoptosis of human promyelocytic leukemia HLâ 60 cells. J Biol Chem. 1999; 274: 33835 â 33838.
dc.identifier.citedreferenceMasumoto J, Taniguchi S, Sagara J. Pyrin Nâ terminal homology domainâ and caspase recruitment domainâ dependent oligomerization of ASC. Biochem Biophys Res Commun. 2001; 280: 652 â 655.
dc.identifier.citedreferenceVajjhala PR, Mirams RE, Hill JM. Multiple binding sites on the pyrin domain of ASC protein allow selfâ association and interaction with NLRP3 protein. J Biol Chem. 2012; 287: 41732 â 41743.
dc.identifier.citedreferenceFernandesâ Alnemri T, Wu J, Yu JW, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspaseâ 1 activation. Cell Death Differ. 2007; 14: 1590 â 1604.
dc.identifier.citedreferenceSrinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES. The PYRINâ CARD protein ASC is an activating adaptor for caspaseâ 1. J Biol Chem. 2002; 277: 21119 â 21122.
dc.identifier.citedreferenceBlack RA, Kronheim SR, Merriam JE, March CJ, Hopp TP. A preâ aspartateâ specific protease from human leukocytes that cleaves proâ interleukinâ 1 beta. J Biol Chem. 1989; 264: 5323 â 5326.
dc.identifier.citedreferenceKostura MJ, Tocci MJ, Limjuco G, et al. Identification of a monocyte specific preâ interleukin 1 beta convertase activity. Proc Natl Acad Sci U S A. 1989; 86: 5227 â 5231.
dc.identifier.citedreferenceThornberry NA, Bull HG, Calaycay JR, et al. A novel heterodimeric cysteine protease is required for interleukinâ 1 beta processing in monocytes. Nature. 1992; 356: 768 â 774.
dc.identifier.citedreferenceWilson KP, Black JA, Thomson JA, et al. Structure and mechanism of interleukinâ 1 beta converting enzyme. Nature. 1994; 370: 270 â 275.
dc.identifier.citedreferenceGu Y, Kuida K, Tsutsui H, et al. Activation of interferonâ gamma inducing factor mediated by interleukinâ 1beta converting enzyme. Science. 1997; 275: 206 â 209.
dc.identifier.citedreferenceGhayur T, Banerjee S, Hugunin M, et al. Caspaseâ 1 processes IFNâ gammaâ inducing factor and regulates LPSâ induced IFNâ gamma production. Nature. 1997; 386: 619 â 623.
dc.identifier.citedreferenceDinarello CA. Interleukinâ 1 beta, interleukinâ 18, and the interleukinâ 1 beta converting enzyme. Ann N Y Acad Sci. 1998; 856: 1 â 11.
dc.identifier.citedreferenceFantuzzi G, Dinarello CA. Interleukinâ 18 and interleukinâ 1 beta: two cytokine substrates for ICE (caspaseâ 1). J Clin Immunol. 1999; 19: 1 â 11.
dc.identifier.citedreferenceBergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009; 7: 99 â 109.
dc.identifier.citedreferenceGrenier JM, Wang L, Manji GA, et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NFâ kappaB and caspaseâ 1. FEBS Lett. 2002; 530: 73 â 78.
dc.identifier.citedreferenceChen GY, Liu M, Wang F, Bertin J, Nunez G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 2011; 186: 7187 â 7194.
dc.identifier.citedreferenceKinoshita T, Wang Y, Hasegawa M, Imamura R, Suda T. PYPAF3, a PYRINâ containing APAFâ 1â like protein, is a feedback regulator of caspaseâ 1â dependent interleukinâ 1beta secretion. J Biol Chem. 2005; 280: 21720 â 21725.
dc.identifier.citedreferenceKhare S, Dorfleutner A, Bryan NB, et al. An NLRP7â containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity. 2012; 36: 464 â 476.
dc.identifier.citedreferenceSutterwala FS, Flavell RA. NLRC4/IPAF: a CARD carrying member of the NLR family. Clin Immunol. 2009; 130: 2 â 6.
dc.identifier.citedreferenceKerur N, Veettil MV, Sharmaâ Walia N, et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcomaâ associated herpesvirus infection. Cell Host Microbe. 2011; 9: 363 â 375.
dc.identifier.citedreferenceBurckstummer T, Baumann C, Bluml S, et al. An orthogonal proteomicâ genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol. 2009; 10: 266 â 272.
dc.identifier.citedreferenceFernandesâ Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009; 458: 509 â 513.
dc.identifier.citedreferenceRoberts TL, Idris A, Dunn JA, et al. HINâ 200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 2009; 323: 1057 â 1060.
dc.identifier.citedreferenceHornung V, Ablasser A, Charrelâ Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspaseâ 1â activating inflammasome with ASC. Nature. 2009; 458: 514 â 518.
dc.identifier.citedreferenceFranchi L, Nunez G. AIM2 joins the gang of microbial sensors. Cell Host Microbe. 2010; 7: 340 â 341.
dc.identifier.citedreferencePark YH, Wood G, Kastner DL, Chae JJ. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol. 2016; 17: 914 â 921.
dc.identifier.citedreferenceAkula MK, Shi M, Jiang Z, et al. Control of the innate immune response by the mevalonate pathway. Nat Immunol. 2016; 17: 922 â 929.
dc.identifier.citedreferenceDorfleutner A, Stehlik C. A dRAStic RHOAdblock of Pyrin inflammasome activation. Nat Immunol. 2016; 17: 900 â 902.
dc.identifier.citedreferenceSutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci. 2014; 1319: 82 â 95.
dc.identifier.citedreferenceBauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NFâ kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009; 183: 787 â 791.
dc.identifier.citedreferenceRomero R, Xu Y, Plazyo O, et al. A role for the inflammasome in spontaneous labor at term. Am J Reprod Immunol. 2016; doi: 10.1111/aji.12440. [Epub ahead of print].
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. A role for the inflammasome in spontaneous labor at term with acute histologic chorioamnionitis. Reprod Sci. 2016; doi: 10.1177/1933719116675058. [Epub ahead of print].
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. A role for the inflammasome in spontaneous preterm labor with acute histologic chorioamnionitis. Reprod Sci. 2017; doi: 10.1177/193371911668765. [Epub ahead of print].
dc.identifier.citedreferenceSester DP, Thygesen SJ, Sagulenko V, et al. A novel flow cytometric method to assess inflammasome formation. J Immunol. 2015; 194: 455 â 462.
dc.identifier.citedreferenceKim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015; 213: S29 â S52.
dc.identifier.citedreferenceRedline RW. Classification of placental lesions. Am J Obstet Gynecol. 2015; 213: S21 â S28.
dc.identifier.citedreferenceXu Y, Plazyo O, Romero R, Hassan SS, Gomezâ Lopez N. Isolation of leukocytes from the human maternalâ fetal interface. J Vis Exp. 2015; e52863.
dc.identifier.citedreferenceRomero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel LA, Nien JK. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. 2006; 11: 317 â 326.
dc.identifier.citedreferenceHaddad R, Tromp G, Kuivaniemi H, et al. Human spontaneous labor without histologic chorioamnionitis is characterized by an acute inflammation gene expression signature. Am J Obstet Gynecol. 2006; 195: 394. e391â 324.
dc.identifier.citedreferenceHassan SS, Romero R, Haddad R, et al. The transcriptome of the uterine cervix before and after spontaneous term parturition. Am J Obstet Gynecol. 2006; 195: 778 â 786.
dc.identifier.citedreferenceRomero R, Gotsch F, Pineles B, Kusanovic JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev. 2007; 65: S194 â S202.
dc.identifier.citedreferenceMittal P, Romero R, Tarca AL, et al. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J Perinat Med. 2010; 38: 617 â 643.
dc.identifier.citedreferenceGomezâ Lopez N, StLouis D, Lehr MA, Sanchezâ Rodriguez EN, Arenasâ Hernandez M. Immune cells in term and preterm labor. Cell Mol Immunol. 2014; 11: 571 â 581.
dc.identifier.citedreferenceRomero R, Nores J, Mazor M, et al. Microbial invasion of the amniotic cavity during term labor. Prevalence and clinical significance. J Reprod Med. 1993; 38: 543 â 548.
dc.identifier.citedreferenceSeong HS, Lee SE, Kang JH, Romero R, Yoon BH. The frequency of microbial invasion of the amniotic cavity and histologic chorioamnionitis in women at term with intact membranes in the presence or absence of labor. Am J Obstet Gynecol. 2008; 199: 375. e371â 375.
dc.identifier.citedreferenceRomero R, Brody DT, Oyarzun E, et al. Infection and labor. III. Interleukinâ 1: a signal for the onset of parturition. Am J Obstet Gynecol. 1989; 160: 1117 â 1123.
dc.identifier.citedreferenceRomero R, Parvizi ST, Oyarzun E, et al. Amniotic fluid interleukinâ 1 in spontaneous labor at term. J Reprod Med. 1990; 35: 235 â 238.
dc.identifier.citedreferenceRomero R, Mazor M, Brandt F, et al. Interleukinâ 1 alpha and interleukinâ 1 beta in preterm and term human parturition. Am J Reprod Immunol. 1992; 27: 117 â 123.
dc.identifier.citedreferenceRomero R, Sepulveda W, Mazor M, et al. The natural interleukinâ 1 receptor antagonist in term and preterm parturition. Am J Obstet Gynecol. 1992; 167: 863 â 872.
dc.identifier.citedreferenceRomero R, Gomez R, Galasso M, et al. The natural interleukinâ 1 receptor antagonist in the fetal, maternal, and amniotic fluid compartments: the effect of gestational age, fetal gender, and intrauterine infection. Am J Obstet Gynecol. 1994; 171: 912 â 921.
dc.identifier.citedreferenceRomero R, Mazor M, Sepulveda W, Avila C, Copeland D, Williams J. Tumor necrosis factor in preterm and term labor. Am J Obstet Gynecol. 1992; 166: 1576 â 1587.
dc.identifier.citedreferenceOpsjln SL, Wathen NC, Tingulstad S, et al. Tumor necrosis factor, interleukinâ 1, and interleukinâ 6 in normal human pregnancy. Am J Obstet Gynecol. 1993; 169: 397 â 404.
dc.identifier.citedreferenceMaymon E, Ghezzi F, Edwin SS, et al. The tumor necrosis factor alpha and its soluble receptor profile in term and preterm parturition. Am J Obstet Gynecol. 1999; 181: 1142 â 1148.
dc.identifier.citedreferenceSaito S, Kasahara T, Kato Y, Ishihara Y, Ichijo M. Elevation of amniotic fluid interleukin 6 (ILâ 6), ILâ 8 and granulocyte colony stimulating factor (Gâ CSF) in term and preterm parturition. Cytokine. 1993; 5: 81 â 88.
dc.identifier.citedreferenceAndrews WW, Hauth JC, Goldenberg RL, Gomez R, Romero R, Cassell GH. Amniotic fluid interleukinâ 6: correlation with upper genital tract microbial colonization and gestational age in women delivered after spontaneous labor versus indicated delivery. Am J Obstet Gynecol. 1995; 173: 606 â 612.
dc.identifier.citedreferenceRomero R, Ceska M, Avila C, Mazor M, Behnke E, Lindley I. Neutrophil attractant/activating peptideâ 1/interleukinâ 8 in term and preterm parturition. Am J Obstet Gynecol. 1991; 165: 813 â 820.
dc.identifier.citedreferenceOlah KS, Vince GS, Neilson JP, Deniz G, Johnson PM. Interleukinâ 6, interferonâ gamma, interleukinâ 8, and granulocyteâ macrophage colony stimulating factor levels in human amniotic fluid at term. J Reprod Immunol. 1996; 32: 89 â 98.
dc.identifier.citedreferenceDudley DJ, Hunter C, Mitchell MD, Varner MW. Elevations of amniotic fluid macrophage inflammatory proteinâ 1 alpha concentrations in women during term and preterm labor. Obstet Gynecol. 1996; 87: 94 â 98.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.