Show simple item record

Specific and spatial labeling of P0â Cre versus Wnt1â Cre in cranial neural crest in early mouse embryos

dc.contributor.authorChen, Guiqian
dc.contributor.authorIshan, Mohamed
dc.contributor.authorYang, Jingwen
dc.contributor.authorKishigami, Satoshi
dc.contributor.authorFukuda, Tomokazu
dc.contributor.authorScott, Greg
dc.contributor.authorRay, Manas K.
dc.contributor.authorSun, Chenming
dc.contributor.authorChen, Shi‐you
dc.contributor.authorKomatsu, Yoshihiro
dc.contributor.authorMishina, Yuji
dc.contributor.authorLiu, Hong‐xiang
dc.date.accessioned2017-06-16T20:14:35Z
dc.date.available2018-08-07T15:51:22Zen
dc.date.issued2017-06
dc.identifier.citationChen, Guiqian; Ishan, Mohamed; Yang, Jingwen; Kishigami, Satoshi; Fukuda, Tomokazu; Scott, Greg; Ray, Manas K.; Sun, Chenming; Chen, Shi‐you ; Komatsu, Yoshihiro; Mishina, Yuji; Liu, Hong‐xiang (2017). "Specific and spatial labeling of P0â Cre versus Wnt1â Cre in cranial neural crest in early mouse embryos." genesis 55(6): n/a-n/a.
dc.identifier.issn1526-954X
dc.identifier.issn1526-968X
dc.identifier.urihttps://hdl.handle.net/2027.42/137503
dc.description.abstractP0â Cre and Wnt1â Cre mouse lines have been widely used in combination with loxPâ flanked mice to label and genetically modify neural crest (NC) cells and their derivatives. Wnt1â Cre has been regarded as the gold standard and there have been concerns about the specificity of P0â Cre because it is not clear about the timing and spatial distribution of the P0â Cre transgene in labeling NC cells at early embryonic stages. We reâ visited P0â Cre and Wnt1â Cre models in the labeling of NC cells in early mouse embryos with a focus on cranial NC. We found that R26â lacZ Cre reporter responded to Cre activity more reliably than CAAGâ lacZ Cre reporter during early embryogenesis. Cre immunosignals in P0â Cre and reporter (lacZ and RFP) activity in P0â Cre/R26â lacZ and P0â Cre/R26â RFP embryos was detected in the cranial NC and notochord regions in E8.0â 9.5 (4â 19 somites) embryos. P0â Cre transgene expression was observed in migrating NC cells and was more extensive in the forebrain and hindbrain but not apparent in the midbrain. Differences in the Cre distribution patterns of P0â Cre and Wnt1â Cre were profound in the midbrain and hindbrain regions, that is, extensive in the midbrain of Wnt1â Cre and in the hindbrain of P0â Cre embryos. The difference between P0â Cre and Wnt1â Cre in labeling cranial NC may provide a better explanation of the differential distributions of their NC derivatives and of the phenotypes caused by Creâ driven genetic modifications.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherP0â Cre
dc.subject.otherneural crest
dc.subject.othermouse
dc.subject.otherlineage tracing
dc.subject.otherderivation
dc.subject.otherWnt1â Cre
dc.titleSpecific and spatial labeling of P0â Cre versus Wnt1â Cre in cranial neural crest in early mouse embryos
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137503/1/dvg23034_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137503/2/dvg23034.pdf
dc.identifier.doi10.1002/dvg.23034
dc.identifier.sourcegenesis
dc.identifier.citedreferenceSahar, D. E., L o ngaker, M. T., & Quarto, N. ( 2005 ). Sox9 neural crest determinant gene controls patterning and closure of the posterior frontal cranial suture. Developmental Biology, 280, 344 â 361.
dc.identifier.citedreferenceNichols, D. H. ( 1981 ). Neural crest formation in the head of the mouse embryo as observed using a new histological technique. Journal of Embryology & Experimental Morphology, 64, 105 â 120.
dc.identifier.citedreferenceNoden, D. M., & Trainor, P. A. ( 2005 ). Relations and interactions between cranial mesoderm and neural crest populations. Journal of Anatomy, 207, 575 â 601.
dc.identifier.citedreferenceNomuraâ Kitabayashi, A., Phoon, C. K., Kishigami, S., Rosenthal, J., Yamauchi, Y., Abe, K., â ¦ Mishina, Y. ( 2009 ). Outflow tract cushions perform a critical valveâ like function in the early embryonic heart requiring BMPRIAâ mediated signaling in cardiac neural crest. American Journal of Physiology: Heart & Circulatory Physiology, 297, H1617 â H1628.
dc.identifier.citedreferenceNovak, A., Guo, C., Yang, W., Nagy, A., & Lobe, C. G. ( 2000 ). Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Creâ mediated excision. Genesis, 28, 147 â 155.
dc.identifier.citedreferenceOgawa, Y., Eto, A., Miyake, C., Tsuchida, N., Miyake, H., Takaku, Y., â ¦ Oishi, K. ( 2015 ). Induced pluripotent stem cells generated from P0â Cre;Z/EG transgenic mice. PLoS One, 10, e0138620.
dc.identifier.citedreferenceOno, M., Suzawa, T., Takami, M., Yamamoto, G., Hosono, T., Yamada, A., â ¦ Kamijo, R. ( 2015 ). Localization and osteoblastic differentiation potential of neural crestâ derived cells in oral tissues of adult mice. Biochemical & Biophysical Research Communication 464, 1209 â 1214.
dc.identifier.citedreferencePomp, O., Brokhman, I., Benâ Dor, I., Reubinoff, B., & Goldstein, R. S. ( 2005 ). Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells, 23, 923 â 930.
dc.identifier.citedreferenceRowitch, D. H., Echelard, Y., Danielian, P. S., Gellner, K., Brenner, S., & McMahon, A. P. ( 1998 ). Identification of an evolutionarily conserved 110 baseâ pair cisâ acting regulatory sequence that governs Wntâ 1 expression in the murine neural plate. Development, 125, 2735 â 2746.
dc.identifier.citedreferenceSakai, K., & Miyazaki, J. ( 1997 ). A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochemical & Biophysical Research Communication, 237, 318 â 324.
dc.identifier.citedreferenceSerbedzija, G. N., Bronnerâ Fraser, M., & Fraser, S. E. ( 1992 ). Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development, 116, 297 â 307.
dc.identifier.citedreferenceSimon, C., Lickert, H., Gotz, M., & Dimou, L. ( 2012 ). Sox10â iCreERT2: a mouse line to inducibly trace the neural crest and oligodendrocyte lineage. Genesis, 50, 506 â 515.
dc.identifier.citedreferenceSommer, L., & Suter, U. ( 1998 ). The glycoprotein P0 in peripheral gliogenesis. Cell Tissue Research, 292, 11 â 16.
dc.identifier.citedreferenceSoriano, P. ( 1999 ). Generalized lacZ expression with the RoSA26 Cre reporter strain. Nature Genetics, 21, 70 â 71.
dc.identifier.citedreferenceSpokony, R. F., Aoki, Y., Saintâ Germain, N., Magnerâ Fink, E., & Saintâ Jeannet, J. P. ( 2002 ). The transcription factor Sox9 is required for cranial neural crest development in Xenopus. Development, 129, 421 â 432.
dc.identifier.citedreferenceSuzuki, J., Yoshizaki, K., Kobayashi, T., & Osumi, N. ( 2013 ). Neural crestâ derived horizontal basal cells as tissue stem cells in the adult olfactory epithelium. Neuroscience Research, 75, 112 â 120.
dc.identifier.citedreferenceTallquist, M. D., & Soriano, P. ( 2000 ). Epiblastâ restricted Cre expression in MoRE mice: a tool to distinguish embryonic vs. extraâ embryonic gene function. Genesis, 26, 113 â 115.
dc.identifier.citedreferenceTomita, Y., Matsumura, K., Wakamatsu, Y., Matsuzaki, Y., Shibuya, I., Kawaguchi, H., â ¦ Fukuda, K. ( 2005 ). Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. Journal of Cell Biology, 170, 1135 â 1146.
dc.identifier.citedreferenceTrainor, P. A. ( 2005a ). Specification and patterning of neural crest cells during craniofacial development. Brain, Behavior, & Immunity, 66, 266 â 280.
dc.identifier.citedreferenceTrainor, P. A. ( 2005b ). Specification of neural crest cell formation and migration in mouse embryos. Seminars in Cell & Developmental Biology, 16, 683 â 693.
dc.identifier.citedreferenceTrainor, P. A. ( 2015 ). Neural crest and placodes. Preface. Current Topics in Developmental Biology, 111, 15 â 16.
dc.identifier.citedreferenceWang, S. K., Komatsu, Y., & Mishina, Y. ( 2011 ). Potential contribution of neural crest cells to dental enamel formation. Biochemical & Biophysical Research Communications, 415, 114 â 119.
dc.identifier.citedreferenceWang, Q., Kumar, S., Mitsios, N., Slevin, M., & Kumar, P. ( 2007 ). Investigation of downstream target genes of PAX3c, PAX3e and PAX3g isoforms in melanocytes by microarray analysis. International Journal of Cancer, 120, 1223 â 1231.
dc.identifier.citedreferenceWeissman, T. A., & Pan, Y. A. ( 2015 ). Brainbow: New resources and emerging biological applications for multicolor genetic labeling and analysis. Genetics, 199, 293 â 306.
dc.identifier.citedreferenceWeissman, T. A., Sanes, J. R., Lichtman, J. W., & Livet, J. ( 2011 ). Generation and imaging of Brainbow mice. Cold Spring Harbor Protocols, 2011, 851 â 856.
dc.identifier.citedreferenceYamauchi, Y., Abe, K., Mantani, A., Hitoshi, Y., Suzuki, M., Osuzu, F., â ¦ Yamamura, K. ( 1999 ). A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice. Developmental Biology, 212, 191 â 203.
dc.identifier.citedreferenceYoshida, S., Shimmura, S., Nagoshi, N., Fukuda, K., Matsuzaki, Y., Okano, H., & Tsubota, K. ( 2006 ). Isolation of multipotent neural crestâ derived stem cells from the adult mouse cornea. Stem Cells, 24, 2714 â 2722.
dc.identifier.citedreferenceYoshida, T., Vivatbutsiri, P., Morrissâ Kay, G., Saga, Y., & Iseki, S. ( 2008 ). Cell lineage in mammalian craniofacial mesenchyme. Mechanisms of Development, 125, 797 â 808.
dc.identifier.citedreferenceYoung, H. M. ( 2000 ). Increased expression of p75NTR by neural crestâ derived cells in vivo during mitosis. Neuroreport, 11, 725 â 728.
dc.identifier.citedreferenceYoung, H. M., Ciampoli, D., Hsuan, J., & Canty, A. J. ( 1999 ). Expression of Retâ , p75(NTR)â , Phox2aâ , Phox2bâ , and tyrosine hydroxylaseâ immunoreactivity by undifferentiated neural crestâ derived cells and different classes of enteric neurons in the embryonic mouse gut. Developmental Dynamics, 216, 137 â 152.
dc.identifier.citedreferenceZhang, S. M., Marsh, R., Ratner, N., & Brackenbury, R. ( 1995 ). Myelin glycoprotein P0 is expressed at early stages of chicken and rat embryogenesis. Journal of Neuroscience Research, 40, 241 â 250.
dc.identifier.citedreferenceAoto, K., Sandell, L. L., Butler Tjaden, N. E., Yuen, K. C., Watt, K. E., Black, B. L., â ¦ Trainor, P. A. ( 2015 ). Mef2câ F10N enhancer driven betaâ galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells. Developmental Biology, 402, 3 â 16.
dc.identifier.citedreferenceAraki, K., Araki, M., Miyazaki, J., & Vassalli, P. ( 1995 ). Siteâ specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proceedings of the National Academy of Science of United States of America, 92, 160 â 164.
dc.identifier.citedreferenceBarriga, E. H., Trainor, P. A., Bronner, M., & Mayor, R. ( 2015 ). Animal models for studying neural crest development: Is the mouse different? Development, 142, 1555 â 1560.
dc.identifier.citedreferenceBoggs, K., Venkatesan, N., Mederacke, I., Komatsu, Y., Stice, S., Schwabe, R. F., â ¦ Liu, H. X. ( 2016 ). Contribution of underlying connective tissue cells to taste buds in mouse tongue and soft palate. PLoS One, 11, e0146475.
dc.identifier.citedreferenceBronnerâ Fraser, M. ( 2004 ). Development. Making sense of the sensory lineage. Science, 303, 966 â 968.
dc.identifier.citedreferenceCavanaugh, A. M., Huang, J., & Chen, J. N. ( 2015 ). Two developmentally distinct populations of neural crest cells contribute to the zebrafish heart. Developmental Biology, 404, 103 â 112.
dc.identifier.citedreferenceChai, Y., Jiang, X., Ito, Y., Bringas, P., Jr., Han, J., Rowitch, D. H., â ¦ Sucov, H. M. ( 2000 ). Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 127, 1671 â 1679.
dc.identifier.citedreferenceChai, Y., & Maxson, R. E. Jr. ( 2006 ). Recent advances in craniofacial morphogenesis. Dev Dyn, 235, 2353 â 2375.
dc.identifier.citedreferenceChan, W. Y., & Tam, P. P. ( 1988 ). A morphological and experimental study of the mesencephalic neural crest cells in the mouse embryo using wheat germ agglutininâ gold conjugate as the cell marker. Development, 102, 427 â 442.
dc.identifier.citedreferenceCrane, J. F., & Trainor, P. A. ( 2006 ). Neural crest stem and progenitor cells. Annual Reviews of Cell Developmental Biology, 22, 267 â 286.
dc.identifier.citedreferenceDanielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K., & McMahon, A. P. ( 1998 ). Modification of gene activity in mouse embryos in utero by a tamoxifenâ inducible form of Cre recombinase. Current Biology, 8, 1323 â 1326.
dc.identifier.citedreferenceEchelard, Y., Vassileva, G., & McMahon, A. P. ( 1994 ). Cis â acting regulatory sequences governing Wntâ 1 expression in the developing mouse CNS. Development, 120, 2213 â 2224.
dc.identifier.citedreferenceFeltri, M. L., D’antonio, M., Previtali, S., Fasolini, M., Messing, A., & Wrabetz, L. ( 1999a ). P0â Cre transgenic mice for inactivation of adhesion molecules in Schwann cells. Annals of New York Academy of Science, 883, 116 â 123.
dc.identifier.citedreferenceFeltri, M. L., D’antonio, M., Quattrini, A., Numerato, R., Arona, M., Previtali, S., â ¦ Wrabetz, L. ( 1999b ). A novel P0 glycoprotein transgene activates expression of lacZ in myelinâ forming Schwann cells. European Journal of Neuroscience, 11, 1577 â 1586.
dc.identifier.citedreferenceFreem, L. J., Escot, S., Tannahill, D., Druckenbrod, N. R., Thapar, N., & Burns, A. J. ( 2010 ). The intrinsic innervation of the lung is derived from neural crest cells as shown by optical projection tomography in Wnt1â Cre;YFP reporter mice. Journal of Anatomy, 217, 651 â 664.
dc.identifier.citedreferenceFreyer, L., Aggarwal, V., & Morrow, B. E. ( 2011 ). Dual embryonic origin of the mammalian otic vesicle forming the inner ear. Development, 138, 5403 â 5414.
dc.identifier.citedreferenceGershon, T. R., Shiraz, A., Qin, L. X., Gerald, W. L., Kenney, A. M., & Cheung, N. K. ( 2009 ). Enteric neural crest differentiation in ganglioneuromas implicates Hedgehog signaling in peripheral neuroblastic tumor pathogenesis. PLoS One, 4, e7491.
dc.identifier.citedreferenceHu, N., Stroblâ Mazzulla, P. H., & Bronner, M. E. ( 2014 ). Epigenetic regulation in neural crest development. Developmental Biology, 396, 159 â 168.
dc.identifier.citedreferenceHuang, T., Liu, Y., Huang, M., Zhao, X., & Cheng, L. ( 2010 ). Wnt1â creâ mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. Journal of Molecular Cell Biology, 2, 152 â 163.
dc.identifier.citedreferenceIkeya, M., Lee, S. M., Johnson, J. E., McMahon, A. P., & Takada, S. ( 1997 ). Wnt signalling required for expansion of neural crest and CNS progenitors. Nature, 389, 966 â 970.
dc.identifier.citedreferenceJarad, G., & Miner, J. H. ( 2009 ). The Pax3â Cre transgene exhibits a rostrocaudal gradient of expression in the skeletal muscle lineage. Genesis, 47, 1 â 6.
dc.identifier.citedreferenceJiang, X., Iseki, S., Maxson, R. E., Sucov, H. M., & Morrissâ Kay, G. M. ( 2002 ). Tissue origins and interactions in the mammalian skull vault. Developmental Biology, 241, 106 â 116.
dc.identifier.citedreferenceJinno, H., Morozova, O., Jones, K. L., Biernaskie, J. A., Paris, M., Hosokawa, R., â ¦ Miller, F. D. ( 2010 ). Convergent genesis of an adult neural crestâ like dermal stem cell from distinct developmental origins. Stem Cells, 28, 2027 â 2040.
dc.identifier.citedreferenceJurand, A. ( 1974 ). Some aspects of the development of the notochord in mouse embryos. Journal of Embryology & Experimental Morphology, 32, 1 â 33.
dc.identifier.citedreferenceKatoh, H., Shibata, S., Fukuda, K., Sato, M., Satoh, E., Nagoshi, N., â ¦ Okano, H. ( 2011 ). The dual origin of the peripheral olfactory system: Placode and neural crest. Molecular Brain, 4, 34.
dc.identifier.citedreferenceKawakami, M., Umeda, M., Nakagata, N., Takeo, T., & Yamamura, K. ( 2011 ). Novel migrating mouse neural crest cell assay system utilizing P0â Cre/EGFP fluorescent timeâ lapse imaging. BMC Developmental Biology, 11, 68.
dc.identifier.citedreferenceKawamoto, S., Niwa, H., Tashiro, F., Sano, S., Kondoh, G., Takeda, J., â ¦ Miyazaki, J. ( 2000 ). A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Creâ mediated recombination. FEBS Letters, 470, 263 â 268.
dc.identifier.citedreferenceKomatsu, Y., Yu, P. B., Kamiya, N., Pan, H., Fukuda, T., Scott, G. J., â ¦ Mishina, Y. ( 2013 ). Augmentation of Smadâ dependent BMP signaling in neural crest cells causes craniosynostosis in mice. Journal of Bone & Mineral Research, 28, 1422 â 1433.
dc.identifier.citedreferenceLee, R. T., Nagai, H., Nakaya, Y., Sheng, G., Trainor, P. A., Weston, J. A., & Thiery, J. P. ( 2013 ). Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme. Development, 140, 4890 â 4902.
dc.identifier.citedreferenceLeikola, A. ( 1976 ). The neural crest: migrating cells in embryonic development. Folia Morphology (Praha), 24, 155 â 172.
dc.identifier.citedreferenceLewis, A. E., Vasudevan, H. N., O’neill, A. K., Soriano, P., & Bush, J. ( 2013 ). The widely used Wnt1â Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. Developmental Biology, 379, 229 â 234.
dc.identifier.citedreferenceLi, Z., Xie, W. B., Escano, C. S., Asico, L. D., Xie, Q., Jose, P. A., & Chen, S. Y. ( 2011 ). Response gene to complement 32 is essential for fibroblast activation in renal fibrosis. Journal of Biological Chemistry, 286, 41323 â 41330.
dc.identifier.citedreferenceLiu, H. X., Komatsu, Y., Mishina, Y., & Mistretta, C. M. ( 2012 ). Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds. Developmental Biology, 368, 294 â 303.
dc.identifier.citedreferenceLiu, Y., & Xiao, A. ( 2011 ). Epigenetic regulation in neural crest development. Birth Defects Research Part A: Clinical & Molecular Teratology, 91, 788 â 796.
dc.identifier.citedreferenceMcCann, M. R., Tamplin, O. J., Rossant, J., & Seguin, C. A. ( 2012 ). Tracing notochordâ derived cells using a Notoâ cre mouse: implications for intervertebral disc development. Disease Models & Mechanisms, 5, 73 â 82.
dc.identifier.citedreferenceMcMahon, A. P., Joyner, A. L., Bradley, A., & McMahon, J. A. ( 1992 ). The midbrainâ hindbrain phenotype of Wntâ 1â /Wntâ 1â mice results from stepwise deletion of engrailedâ expressing cells by 9.5 days postcoitum. Cell, 69, 581 â 595.
dc.identifier.citedreferenceMenendez, L., Yatskievych, T. A., Antin, P. B., & Dalton, S. ( 2011 ). Wnt signaling and a Smad pathway blockade direct the differentiation of human pluripotent stem cells to multipotent neural crest cells. Proceedings of the National Academy of Science of United States of America, 108, 19240 â 19245.
dc.identifier.citedreferenceMeulemans, D., & Bronnerâ Fraser, M. ( 2004 ). Geneâ regulatory interactions in neural crest evolution and development. Developmental Cell, 7, 291 â 299.
dc.identifier.citedreferenceMilgromâ Hoffman, M., Michailovici, I., Ferrara, N., Zelzer, E., & Tzahor, E. ( 2014 ). Endothelial cells regulate neural crest and second heart field morphogenesis. Biology Open, 3, 679 â 688.
dc.identifier.citedreferenceMoriâ Akiyama, Y., Akiyama, H., Rowitch, D. H., & de Crombrugghe, B. ( 2003 ). Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc Natl Acad Sci U S A, 100, 9360 â 9365.
dc.identifier.citedreferenceMorikawa, S., Mabuchi, Y., Niibe, K., Suzuki, S., Nagoshi, N., Sunabori, T., â ¦ Matsuzaki, Y. ( 2009 ). Development of mesenchymal stem cells partially originate from the neural crest. Biochemical & Biophysical Research Communications, 379, 1114 â 1119.
dc.identifier.citedreferenceMunoz, W. A., & Trainor, P. A. ( 2015 ). Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell. Current Topics in Developmental Biology, 111, 3 â 26.
dc.identifier.citedreferenceNagoshi, N., Shibata, S., Hamanoue, M., Mabuchi, Y., Matsuzaki, Y., Toyama, Y., â ¦ Okano, H. ( 2011 ). Schwann cell plasticity after spinal cord injury shown by neural crest lineage tracing. Glia, 59, 771 â 784.
dc.identifier.citedreferenceNagoshi, N., Shibata, S., Kubota, Y., Nakamura, M., Nagai, Y., Satoh, E., â ¦ Okano, H. ( 2008 ). Ontogeny and multipotency of neural crestâ derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell, 2, 392 â 403.
dc.identifier.citedreferenceNakamura, T., Colbert, M. C., & Robbins, J. ( 2006 ). Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circulation Research, 98, 1547 â 1554.
dc.identifier.citedreferenceNakanishi, K., Chan, Y. S., & Ito, K. ( 2007 ). Notch signaling is required for the chondrogenic specification of mouse mesencephalic neural crest cells. Mechanisms of Development, 124, 190 â 203.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.