Show simple item record

Photochemistry of forbidden oxygen lines in the inner coma of 67P/Churyumov‐Gerasimenko

dc.contributor.authorCessateur, G.
dc.contributor.authorKeyser, J. De
dc.contributor.authorMaggiolo, R.
dc.contributor.authorGibbons, A.
dc.contributor.authorGronoff, G.
dc.contributor.authorGunell, H.
dc.contributor.authorDhooghe, F.
dc.contributor.authorLoreau, J.
dc.contributor.authorVaeck, N.
dc.contributor.authorAltwegg, K.
dc.contributor.authorBieler, A.
dc.contributor.authorBriois, C.
dc.contributor.authorCalmonte, U.
dc.contributor.authorCombi, M. R.
dc.contributor.authorFiethe, B.
dc.contributor.authorFuselier, S. A.
dc.contributor.authorGombosi, T. I.
dc.contributor.authorHässig, M.
dc.contributor.authorLe Roy, L.
dc.contributor.authorNeefs, E.
dc.contributor.authorRubin, M.
dc.contributor.authorSémon, T.
dc.date.accessioned2017-06-16T20:14:43Z
dc.date.available2017-06-16T20:14:43Z
dc.date.issued2016-01
dc.identifier.citationCessateur, G.; Keyser, J. De; Maggiolo, R.; Gibbons, A.; Gronoff, G.; Gunell, H.; Dhooghe, F.; Loreau, J.; Vaeck, N.; Altwegg, K.; Bieler, A.; Briois, C.; Calmonte, U.; Combi, M. R.; Fiethe, B.; Fuselier, S. A.; Gombosi, T. I.; Hässig, M. ; Le Roy, L.; Neefs, E.; Rubin, M.; Sémon, T. (2016). "Photochemistry of forbidden oxygen lines in the inner coma of 67P/Churyumov‐Gerasimenko." Journal of Geophysical Research: Space Physics 121(1): 804-816.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/137510
dc.description.abstractObservations of the green and red‐doublet emission lines have previously been realized for several comets. We present here a chemistry‐emission coupled model to study the production and loss mechanisms of the O(1S) and O(1D) states, which are responsible for the emission lines of interest for comet 67P/Churyumov‐Gerasimenko. The recent discovery of O2 in significant abundance relative to water 3.80 ± 0.85% within the coma of 67P has been taken into consideration for the first time in such models. We evaluate the effect of the presence of O2 on the green to red‐doublet emission intensity ratio, which is traditionally used to assess the CO2 abundance within cometary atmospheres. Model simulations, solving the continuity equation with transport, show that not taking O2 into account leads to an underestimation of the CO2 abundance within 67P, with a relative error of about 25%. This strongly suggests that the green to red‐doublet emission intensity ratio alone is not a proper tool for determining the CO2 abundance, as previously suggested. Indeed, there is no compelling reason why O2 would not be a common cometary volatile, making revision of earlier assessments regarding the CO2 abundance in cometary atmospheres necessary. The large uncertainties of the CO2 photodissociation cross section imply that more studies are required in order to better constrain the O(1S) and O(1D) production through this mechanism. Space weather phenomena, such as powerful solar flares, could be used as tools for doing so, providing additional information on a good estimation of the O2 abundance within cometary atmospheres.Key PointsThe presence of O2 within 67P’s atmosphere increases significantly the red line emissionEstimations of CO2 abundances based on the G/R ratio should be revised due to the O2 presenceSpace weather phenomena such as solar flares have an impact on the comet photochemistry
dc.publisherWiley Periodicals, Inc.
dc.publisherAm. Chem. Soc. and Am. Inst. Phys
dc.subject.otherairglow
dc.subject.otherROSINA/DFMS
dc.subject.other67P/Churyumov‐Gerasimenko
dc.subject.otheroxygen line emissions
dc.titlePhotochemistry of forbidden oxygen lines in the inner coma of 67P/Churyumov‐Gerasimenko
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137510/1/jgra52340.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137510/2/jgra52340_am.pdf
dc.identifier.doi10.1002/2015JA022013
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceLee, L. C., T. G. Slanger, G. Black, and R. L. Sharpless ( 1977 ), Quantum yields for the production of O( 1 D) from photodissociation of O 2 at 1160–1770 Å, J. Chem. Phys., 67, 5602 – 5606.
dc.identifier.citedreferenceGeiss, J., K. Altwegg, E. Anders, H. Balsiger, A. Meier, E. G. Shelley, W.‐H. Ip, H. Rosenbauer, and M. Neugebauer ( 1991 ), Interpretation of the ion mass spectra in the mass per charge range 25–35 amu/e obtained in the inner coma of Halley’s comet by the HIS‐sensor of the Giotto IMS experiment, Astron. Astrophys., 247, 226 – 234.
dc.identifier.citedreferenceGrasset, O., et al. ( 2013 ), JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system, Planet. Space Sci., 78, 1 – 21, doi: 10.1016/j.pss.2012.12.002.
dc.identifier.citedreferenceAltwegg, K., et al. ( 2015 ), 67P/Churyumov‐Gerasimenko, a Jupiter family comet with a high D/H ratio, Science, 347 ( 27 ), 1261952, doi: 10.1126/science.1261952.
dc.identifier.citedreferenceAtkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe ( 2004 ), Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—Gas phase reactions of O x, HO x, NO x and SO x species, Atmos. Chem. Phys., 4 ( 6 ), 1461 – 1738, doi: 10.5194/acp-4-1461-2004.
dc.identifier.citedreferenceBalsiger, H., et al. ( 2007 ), Rosina Rosetta orbiter spectrometer for ion and neutral analysis, Space Sci. Rev., 128, 745 – 801, doi: 10.1007/s11214-006-8335-3.
dc.identifier.citedreferenceBenkhoff, J., J. van Casteren, H. Hayakawa, M. Fujimoto, H. Laakso, M. Novara, P. Ferri, H. R. Middleton, and R. Ziethe ( 2010 ), BepiColombo‐Comprehensive exploration of Mercury: Mission overview and science goals, Planet. Space Sci., 58, 2 – 20, doi: 10.1016/j.pss.2009.09.020.
dc.identifier.citedreferenceBhardwaj, A., and S. Raghuram ( 2012 ), A coupled chemistry‐emission model for atomic oxygen green and red‐doublet emissions in the comet C/1996 B2 Hyakutake, Astrophys. J., 748, 13, doi: 10.1088/0004-637X/748/1/13.
dc.identifier.citedreferenceBieler, A., et al. ( 2015 ), Abundant molecular oxygen in the coma of 67P/Churyumov‐Gerasimenko, Nature, 526 ( 7575 ), 678 – 681.
dc.identifier.citedreferenceCochran, A. L. ( 2008 ), Atomic oxygen in the comae of comets, Icarus, 198, 181 – 188, doi: 10.1016/j.icarus.2008.06.007.
dc.identifier.citedreferenceDecock, A., E. Jehin, D. Hutsemékers, and J. Manfroid ( 2013 ), Forbidden oxygen lines in comets at various heliocentric distances, Astron. Astrophys., 555, A34, doi: 10.1051/0004-6361/201220414.
dc.identifier.citedreferenceDecock, A., E. Jehin, P. Rousselot, D. Hutsemékers, J. Manfroid, S. Raghuram, A. Bhardwaj, and B. Hubert ( 2015 ), Forbidden oxygen lines at various nucleocentric distances in comets, Astron. Astrophys., 573, A1, doi: 10.1051/0004-6361/201424403.
dc.identifier.citedreferenceEvans, J. S., et al. ( 2015 ), Retrieval of CO 2 and N 2 in the Martian thermosphere using dayglow observations by IUVsS on MAVEN, Geophys. Res. Lett., 42, 9040 – 9049, doi: 10.1002/2015GL065489.
dc.identifier.citedreferenceFischer, C. F., and G. Tachiev ( 2004 ), Breit‐Pauli energy levels, lifetimes, and transition probabilities for the beryllium‐like to neon‐like sequences, At. Data Nucl. Data Tables, 87 ( 1 ), 1 – 184, doi: 10.1016/j.adt.2004.02.001.
dc.identifier.citedreferenceGronoff, G., C. S. Wedlund, C. J. Mertens, J. Lilensten, R. Lillis, and P. V. Johnson ( 2011 ), The AtMoCIAD database, paper presented at EPSC‐DPS Joint Meeting, p. 1259, La Cité Internationale des Congrès Nantes Métropole, Nantes, France, 2–7 Oct.
dc.identifier.citedreferenceGronoff, G., C. Simon Wedlund, C. J. Mertens, and R. J. Lillis ( 2012a ), Computing uncertainties in ionosphere‐airglow models: I. Electron flux and species production uncertainties for Mars, J. Geophys. Res., 117, A04306, doi: 10.1029/2011JA016930.
dc.identifier.citedreferenceGronoff, G., C. Simon Wedlund, C. J. Mertens, M. Barthélemy, R. J. Lillis, and O. Witasse ( 2012b ), Computing uncertainties in ionosphere‐airglow models: II. The Martian airglow, J. Geophys. Res., 117, A05309, doi: 10.1029/2011JA017308.
dc.identifier.citedreferenceGronoff, G., A. Rahmati, C. S. Wedlund, C. J. Mertens, T. E. Cravens, and E. Kallio ( 2014 ), The precipitation of keV energetic oxygen ions at Mars and their effects during the comet Siding Spring approach, Geophys. Res. Lett., 41, 4844 – 4850, doi: 10.1002/2014GL060902.
dc.identifier.citedreferenceHaser, L. ( 1957 ), Distribution d’intensité dans la tête d’une comète, Bull. Soc. R. Sci. Liege, 43, 740 – 750.
dc.identifier.citedreferenceHässig, M., et al. ( 2015 ), Time variability and heterogeneity in the coma of 67P/Churyumov‐Gerasimenko, Science, 347 ( 1 ), aaa0276, doi: 10.1126/science.aaa0276.
dc.identifier.citedreferenceHuebner, W., and J. Mukherjee ( 2015 ), Photoionization and photodissociation rates in solar and blackbody radiation fields, Planet. Space Sci., 106, 11 – 45, doi: 10.1016/j.pss.2014.11.022.
dc.identifier.citedreferenceHuestis, D. L., T. G. Slanger, B. D. Sharpee, and J. L. Fox ( 2010 ), Chemical origins of the Mars ultraviolet dayglow, Faraday Discuss., 147, 307, doi: 10.1039/c003456h.
dc.identifier.citedreferenceLe Roy, L., et al. ( 2015 ), The inventory of the volatiles on comet 67P/Churyumov‐Gerasimenko from Rosetta/Rosina, Astron. Astrophys., 583, A1, doi: 10.1051/0004‐6361/201526450.
dc.identifier.citedreferenceLilensten, J., A. J. Coates, V. Dehant, T. Dudok de Wit, R. B. Horne, F. Leblanc, J. Luhmann, E. Woodfield, and M. Barthélemy ( 2014 ), What characterizes planetary space weather?, Astron. Astrophys. Rev., 22, 79, doi: 10.1007/s00159-014-0079-6.
dc.identifier.citedreferenceMcClintock, W. E., M. Snow, and T. N. Woods ( 2005 ), Solar‐stellar irradiance comparison experiment II (SOLSTICE II): Pre‐launch and on‐orbit calibrations, Sol. Phys., 230, 259 – 294, doi: 10.1007/s11207-005-1585-5.
dc.identifier.citedreferenceMcKay, A., A. Cochran, M. DiSanti, G. Villanueva, N. Dello Russo, R. Vervack, J. Morgenthaler, W. Harris, and N. Chanover ( 2015 ), Evolution of H 2 O, CO, and {CO 2 } production in comet c/2009 {P1} garradd during the 2011;‐2012 apparition, Icarus, 250, 504 – 515, doi: 10.1016/j.icarus.2014.12.023.
dc.identifier.citedreferenceMcKay, A. J., N. J. Chanover, J. P. Morgenthaler, A. L. Cochran, W. M. Harris, and N. D. Russo ( 2012 ), Forbidden oxygen lines in Comets C/2006 W3 Christensen and C/2007 Q3 Siding Spring at large heliocentric distance: Implications for the sublimation of volatile ices, Icarus, 220, 277 – 285, doi: 10.1016/j.icarus.2012.04.030.
dc.identifier.citedreferenceMcKay, A. J., N. J. Chanover, J. P. Morgenthaler, A. L. Cochran, W. M. Harris, and N. D. Russo ( 2013 ), Observations of the forbidden oxygen lines in DIXI target Comet 103P/Hartley, Icarus, 222, 684 – 690, doi: 10.1016/j.icarus.2012.06.020.
dc.identifier.citedreferenceMorgenthaler, J. P., W. M. Harris, and M. R. Combi ( 2007 ), Large aperture [OI] 6300 Å observations of comet Hyakutake: Implications for the photochemistry of OH and [OI] production in comet Hale‐Bopp, The Astrophys. J., 657 ( 2 ), 1162 – 1171.
dc.identifier.citedreferenceRaghuram, S., and A. Bhardwaj ( 2013 ), Model for atomic oxygen visible line emissions in Comet C/1995 O1 Hale‐Bopp, Icarus, 223, 91 – 104, doi: 10.1016/j.icarus.2012.11.032.
dc.identifier.citedreferenceRaghuram, S., and A. Bhardwaj ( 2014 ), Photochemistry of atomic oxygen green and red‐doublet emissions in comets at larger heliocentric distances, Astron. Astrophys., 566, A134, doi: 10.1051/0004-6361/201321921.
dc.identifier.citedreferenceRottman, G. ( 2005 ), The SORCE mission, Sol. Phys., 230, 7 – 25, doi: 10.1007/s11207-005-8112-6.
dc.identifier.citedreferenceRubin, M., et al. ( 2015 ), Molecular nitrogen in comet 67P/Churyumov‐Gerasimenko indicates a low formation temperature, Science, 348, 232 – 235, doi: 10.1126/science.aaa6100.
dc.identifier.citedreferenceSlanger, T. G., P. C. Cosby, B. D. Sharpee, K. R. Minschwaner, and D. E. Siskind ( 2006 ), O( 1 S → 1 D, 3 P) branching ratio as measured in the terrestrial nightglow, J. Geophys. Res., 111, A12318, doi: 10.1029/2006JA011972.
dc.identifier.citedreferenceWiese, W. L., J. R. Fuhr, and T. M. Deters ( 1996 ), Atomic transition probabilities of carbon, nitrogen, and oxygen: A critical data compilation, in Journal of Physical and Chemical Reference Data Monograph, p. 522, Am. Chem. Soc. and Am. Inst. Phys., Woodbury, N. Y.
dc.identifier.citedreferenceWoods, T. N., F. G. Eparvier, S. M. Bailey, P. C. Chamberlin, J. Lean, G. J. Rottman, S. C. Solomon, W. K. Tobiska, and D. L. Woodraska ( 2005 ), Solar EUV Experiment (SEE): Mission overview and first results, J. Geophys. Res., 110, A01312, doi: 10.1029/2004JA010765.
dc.identifier.citedreferenceWoods, T. N., et al. ( 2008 ), XUV Photometer System (XPS): Improved solar irradiance algorithm using CHIANTI spectral models, Sol. Phys., 250, 235 – 267, doi: 10.1007/s11207-008-9196-6.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.