Show simple item record

Dopamine D1 receptor expression is bipolar cell typeâ specific in the mouse retina

dc.contributor.authorFarshi, Pershang
dc.contributor.authorFyk‐kolodziej, Bozena
dc.contributor.authorKrolewski, David M.
dc.contributor.authorWalker, Paul D.
dc.contributor.authorIchinose, Tomomi
dc.date.accessioned2017-06-16T20:15:01Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07-01
dc.identifier.citationFarshi, Pershang; Fyk‐kolodziej, Bozena ; Krolewski, David M.; Walker, Paul D.; Ichinose, Tomomi (2016). "Dopamine D1 receptor expression is bipolar cell typeâ specific in the mouse retina." Journal of Comparative Neurology 524(10): 2059-2079.
dc.identifier.issn0021-9967
dc.identifier.issn1096-9861
dc.identifier.urihttps://hdl.handle.net/2027.42/137524
dc.description.abstractIn the retina, dopamine is a key molecule for daytime vision. Dopamine is released by retinal dopaminergic amacrine cells and transmits signaling either by conventional synaptic or by volume transmission. By means of volume transmission, dopamine modulates all layers of retinal neurons; however, it is not well understood how dopamine modulates visual signaling pathways in bipolar cells. Here we analyzed Drd1aâ tdTomato BAC transgenic mice and found that the dopamine D1 receptor (D1R) is expressed in retinal bipolar cells in a typeâ dependent manner. Strong tdTomato fluorescence was detected in the inner nuclear layer and localized to type 1, 3b, and 4 OFF bipolar cells and type 5â 2, XBC, 6, and 7 ON bipolar cells. In contrast, type 2, 3a, 5â 1, 9, and rod bipolar cells did not express Drd1aâ tdTomato. Other interneurons were also found to express tdTomato including horizontal cells and a subset (25%) of AII amacrine cells. Diverse visual processing pathways, such as color or motionâ coded pathways, are thought to be initiated in retinal bipolar cells. Our results indicate that dopamine sculpts bipolar cell performance in a typeâ dependent manner to facilitate daytime vision. J. Comp. Neurol. 524:2059â 2079, 2016. © 2015 Wiley Periodicals, Inc.Using Drd1aâ tdTomato BAC transgenic mice, authors investigated dopamine D1 receptor localization in retinal bipolar cells. Both ON and OFF bipolar cells express D1 receptors in a typeâ dependent manner.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherRRID: AB_10013483
dc.subject.otherRRID: AB_94936
dc.subject.otherBAC transgenic mice
dc.subject.otherimmunohistochemistry
dc.subject.otherRRID: AB_2115181
dc.subject.otherin situ hybridization: RRID: AB_10000347
dc.subject.otherRRID: AB_2313634
dc.subject.otherRRID: AB_10013783
dc.subject.otherRRID: AB_2201528
dc.subject.otherRRID: AB_2086774
dc.subject.otherRRID: AB_2094841
dc.subject.otherRRID: AB_2314280
dc.subject.otherRRID: AB_2248534
dc.subject.otherRRID: AB_2314947
dc.subject.otherRRID: AB_2158332
dc.subject.otherRRID: AB_397957
dc.subject.otherRRID: AB_628142
dc.subject.otherRRID: AB_2261205
dc.subject.otherRRID: AB_2079751
dc.titleDopamine D1 receptor expression is bipolar cell typeâ specific in the mouse retina
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137524/1/cne23932.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137524/2/cne23932_am.pdf
dc.identifier.doi10.1002/cne.23932
dc.identifier.sourceJournal of Comparative Neurology
dc.identifier.citedreferenceRice DS, Curran T. 2000. Disabledâ 1 is expressed in type AII amacrine cells in the mouse retina. J Comp Neurol 424: 327 â 338.
dc.identifier.citedreferenceMaguire G, Werblin F. 1994. Dopamine enhances a glutamateâ gated ionic current in OFF bipolar cells of the tiger salamander retina. J Neurosci 14: 6094 â 6101.
dc.identifier.citedreferenceMangel SC, Dowling JE. 1985. Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science 229: 1107 â 1109.
dc.identifier.citedreferenceMataruga A, Kremmer E, Muller F. 2007. Type 3a and type 3b OFF cone bipolar cells provide for the alternative rod pathway in the mouse retina. J Comp Neurol 502: 1123 â 1137.
dc.identifier.citedreferenceMills SL, Massey SC. 1995. Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 377: 734 â 737.
dc.identifier.citedreferenceMojumder DK, Sherry DM, Frishman LJ. 2008. Contribution of voltageâ gated sodium channels to the bâ wave of the mammalian flash electroretinogram. J Physiol 586: 2551 â 2580.
dc.identifier.citedreferenceMoraâ Ferrer C, Yazulla S, Studholme KM, Haakâ Frendscho M. 1999. Dopamine D1â receptor immunolocalization in goldfish retina. J Comp Neurol 411: 705 â 714.
dc.identifier.citedreferenceMuller F, Scholten A, Ivanova E, Haverkamp S, Kremmer E, Kaupp UB. 2003. HCN channels are expressed differentially in retinal bipolar cells and concentrated at synaptic terminals. Eur J Neurosci 17: 2084 â 2096.
dc.identifier.citedreferenceNguyenâ Legros J, Simon A, Caille I, Bloch B. 1997. Immunocytochemical localization of dopamine D1 receptors in the retina of mammals. Vis Neurosci 14: 545 â 551.
dc.identifier.citedreferenceOgata G, Stradleigh TW, Partida GJ, Ishida AT. 2012. Dopamine and fullâ field illumination activate D1 and D2â D5â type receptors in adult rat retinal ganglion cells. J Comp Neurol 520: 4032 â 4049.
dc.identifier.citedreferencePan ZH. 2000. Differential expression of highâ and two types of lowâ voltageâ activated calcium currents in rod and cone bipolar cells of the rat retina. J Neurophysiol 83: 513 â 527.
dc.identifier.citedreferencePignatelli V, Strettoi E. 2004. Bipolar cells of the mouse retina: a gene gun, morphological study. J Comp Neurol 476: 254 â 266.
dc.identifier.citedreferencePuthussery T, Venkataramani S, Gayetâ Primo J, Smith RG, Taylor WR. 2013. NaV1.1 channels in axon initial segments of bipolar cells augment input to magnocellular visual pathways in the primate retina. J Neurosci 33: 16045 â 16059.
dc.identifier.citedreferenceRibelayga C, Cao Y, Mangel SC. 2008. The circadian clock in the retina controls rodâ cone coupling. Neuron 59: 790 â 801.
dc.identifier.citedreferenceShuen JA, Chen M, Gloss B, Calakos N. 2008. Drd1aâ tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J Neurosci 28: 2681 â 2685.
dc.identifier.citedreferenceSmith BJ, Cote PD, Tremblay F. 2014. D1 Dopamine receptors modulate cone ON bipolar cell Nav channels to control daily rhythms in photopic vision. Chronobiol Int 1â 11.
dc.identifier.citedreferenceSoto F, Bleckert A, Lewis R, Kang Y, Kerschensteiner D, Craig AM, Wong RO. 2011. Coordinated increase in inhibitory and excitatory synapses onto retinal ganglion cells during development. Neural Dev 6: 31.
dc.identifier.citedreferenceStella SL Jr, Thoreson WB. 2000. Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and cAMP. Eur J Neurosci 12: 3537 â 3548.
dc.identifier.citedreferenceSurmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST. 1992. Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci U S A 89: 10178 â 10182.
dc.identifier.citedreferenceSzel A, Rohlich P, Caffe AR, Juliusson B, Aguirre G, Van Veen T. 1992. Unique topographic separation of two spectral classes of cones in the mouse retina. J Comp Neurol 325: 327 â 342.
dc.identifier.citedreferenceThibault D, Loustalot F, Fortin GM, Bourque MJ, Trudeau LE. 2013. Evaluation of D1 and D2 dopamine receptor segregation in the developing striatum using BAC transgenic mice. PLoS ONE 8: e67219.
dc.identifier.citedreferenceTing JT, Feng G. 2014. Recombineering strategies for developing next generation BAC transgenic tools for optogenetics and beyond. Front Behav Neurosci 8: 111.
dc.identifier.citedreferencetom Dieck S, Altrock WD, Kessels MM, Qualmann B, Regus H, Brauner D, Fejtova A, Bracko O, Gundelfinger ED, Brandstatter JH. 2005. Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J Cell Biol 168: 825 â 836.
dc.identifier.citedreferenceTsukamoto Y, Morigiwa K, Ishii M, Takao M, Iwatsuki K, Nakanishi S, Fukuda Y. 2007. A novel connection between rods and ON cone bipolar cells revealed by ectopic metabotropic glutamate receptor 7 (mGluR7) in mGluR6â deficient mouse retinas. J Neurosci 27: 6261 â 6267.
dc.identifier.citedreferenceUrschel S, Hoher T, Schubert T, Alev C, Sohl G, Worsdorfer P, Asahara T, Dermietzel R, Weiler R, Willecke K. 2006. Protein kinase Aâ mediated phosphorylation of connexin36 in mouse retina results in decreased gap junctional communication between AII amacrine cells. J Biol Chem 281: 33163 â 33171.
dc.identifier.citedreferenceVan Hook MJ, Wong KY, Berson DM. 2012. Dopaminergic modulation of ganglionâ cell photoreceptors in rat. Eur J Neurosci 35: 507 â 518.
dc.identifier.citedreferenceVaquero CF, Pignatelli A, Partida GJ, Ishida AT. 2001. A dopamineâ and protein kinase Aâ dependent mechanism for network adaptation in retinal ganglion cells. J Neurosci 21: 8624 â 8635.
dc.identifier.citedreferenceVeruki ML, Wässle H. 1996. Immunohistochemical localization of dopamine D1 receptors in rat retina. Eur J Neurosci 8: 2286 â 2297.
dc.identifier.citedreferenceVoigt T, Wässle H. 1987. Dopaminergic innervation of A II amacrine cells in mammalian retina. J Neurosci 7: 4115 â 4128.
dc.identifier.citedreferenceVolgyi B, Debertin G, Balogh M, Popovich E, Kovacsâ Oller T. 2014. Compartmentâ specific tyrosine hydroxylaseâ positive innervation to AII amacrine cells in the rabbit retina. Neuroscience 270: 88 â 97.
dc.identifier.citedreferenceWässle H. 2004. Parallel processing in the mammalian retina. Nat Rev Neurosci 5: 747 â 757.
dc.identifier.citedreferenceWässle H, Puller C, Muller F, Haverkamp S. 2009. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J Neurosci 29: 106 â 117.
dc.identifier.citedreferenceWellis DP, Werblin FS. 1995. Dopamine modulates GABAc receptors mediating inhibition of calcium entry into and transmitter release from bipolar cell terminals in tiger salamander retina. J Neurosci 15 ( 7 Pt 1 ): 4748 â 4761.
dc.identifier.citedreferenceWitkovsky P. 2004. Dopamine and retinal function. Doc Ophthalmol 108: 17 â 40.
dc.identifier.citedreferenceWitkovsky P, Svenningsson P, Yan L, Bateup H, Silver R. 2007. Cellular localization and function of DARPPâ 32 in the rodent retina. Eur J Neurosci 25: 3233 â 3242.
dc.identifier.citedreferenceXin D, Bloomfield SA. 1999. Darkâ and lightâ induced changes in coupling between horizontal cells in mammalian retina. J Comp Neurol 405: 75 â 87.
dc.identifier.citedreferenceZhang DQ, Zhou TR, McMahon DG. 2007. Functional heterogeneity of retinal dopaminergic neurons underlying their multiple roles in vision. J Neurosci 27: 692 â 699.
dc.identifier.citedreferenceZinchuk V, Wu Y, Grossenbacherâ Zinchuk O, Stefani E. 2011. Quantifying spatial correlations of fluorescent markers using enhanced background reduction with protein proximity index and correlation coefficient estimations. Nat Protoc 6: 1554 â 1567.
dc.identifier.citedreferenceAde KK, Wan Y, Chen M, Gloss B, Calakos N. 2011. An Improved BAC transgenic fluorescent reporter line for sensitive and specific identification of striatonigral medium spiny neurons. Front Syst Neurosci 5: 32.
dc.identifier.citedreferenceAwatramani GB, Slaughter MM. 2000. Origin of transient and sustained responses in ganglion cells of the retina. J Neurosci 20: 7087 â 7095.
dc.identifier.citedreferenceBaden T, Berens P, Bethge M, Euler T. 2013. Spikes in mammalian bipolar cells support temporal layering of the inner retina. Curr Biol 23: 48 â 52.
dc.identifier.citedreferenceBloomfield SA, Volgyi B. 2009. The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat Rev Neurosci 10: 495 â 506.
dc.identifier.citedreferenceBorghuis BG, Marvin JS, Looger LL, Demb JB. 2013. Twoâ photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J Neurosci 33: 10972 â 10985.
dc.identifier.citedreferenceBreuninger T, Puller C, Haverkamp S, Euler T. 2011. Chromatic bipolar cell pathways in the mouse retina. J Neurosci 31: 6504 â 6517.
dc.identifier.citedreferenceCaille I, Dumartin B, Bloch B. 1996. Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res 730: 17 â 31.
dc.identifier.citedreferenceCangiano L, Gargini C, Della Santina L, Demontis GC, Cervetto L. 2007. Highâ pass filtering of input signals by the Ih current in a nonâ spiking neuron, the retinal rod bipolar cell. PLoS ONE 2: e1327.
dc.identifier.citedreferenceCantrell AR, Catterall WA. 2001. Neuromodulation of Naâ +â channels: an unexpected form of cellular plasticity. Nat Rev Neurosci 2: 397 â 407.
dc.identifier.citedreferenceCantrell AR, Smith RD, Goldin AL, Scheuer T, Catterall WA. 1997. Dopaminergic modulation of sodium current in hippocampal neurons via cAMPâ dependent phosphorylation of specific sites in the sodium channel alpha subunit. J Neurosci 17: 7330 â 7338.
dc.identifier.citedreferenceCatterall WA. 2000. Structure and regulation of voltageâ gated Ca2â +â channels. Annu Rev Cell Dev Biol 16: 521 â 555.
dc.identifier.citedreferenceCohen AI, Todd RD, Harmon S, O’Malley KL. 1992. Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase. Proc Natl Acad Sci U S A 89: 12093 â 12097.
dc.identifier.citedreferenceConnaughton VP, Maguire G. 1998. Differential expression of voltageâ gated Kâ +â and Ca2â +â currents in bipolar cells in the zebrafish retinal slice. Eur J Neurosci 10: 1350 â 1362.
dc.identifier.citedreferenceContini M, Lin B, Kobayashi K, Okano H, Masland RH, Raviola E. 2010. Synaptic input of ONâ bipolar cells onto the dopaminergic neurons of the mouse retina. J Comp Neurol 518: 2035 â 2050.
dc.identifier.citedreferenceDeans MR, Volgyi B, Goodenough DA, Bloomfield SA, Paul DL. 2002. Connexin36 is essential for transmission of rodâ mediated visual signals in the mammalian retina. Neuron 36: 703 â 712.
dc.identifier.citedreferenceDeng YP, Lei WL, Reiner A. 2006. Differential perikaryal localization in rats of D1 and D2 dopamine receptors on striatal projection neuron types identified by retrograde labeling. J Chem Neuroanat 32: 101 â 116.
dc.identifier.citedreferenceDjamgoz MB, Hankins MW, Hirano J, Archer SN. 1997. Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res 37: 3509 â 3529.
dc.identifier.citedreferenceDong CJ, McReynolds JS. 1991. The relationship between light, dopamine release and horizontal cell coupling in the mudpuppy retina. J Physiol 440: 291 â 309.
dc.identifier.citedreferenceDumitrescu ON, Pucci FG, Wong KY, Berson DM. 2009. Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol 517: 226 â 244.
dc.identifier.citedreferenceEuler T, Masland RH. 2000. Lightâ evoked responses of bipolar cells in a mammalian retina. J Neurophysiol 83: 1817 â 1829.
dc.identifier.citedreferenceEuler T, Haverkamp S, Schubert T, Baden T. 2014. Retinal bipolar cells: elementary building blocks of vision. Nat Rev Neurosci 15: 507 â 519.
dc.identifier.citedreferenceFykâ Kolodziej B, Pourcho RG. 2007. Differential distribution of hyperpolarizationâ activated and cyclic nucleotideâ gated channels in cone bipolar cells of the rat retina. J Comp Neurol 501: 891 â 903.
dc.identifier.citedreferenceGhosh KK, Bujan S, Haverkamp S, Feigenspan A, Wässle H. 2004. Types of bipolar cells in the mouse retina. J Comp Neurol 469: 70 â 82.
dc.identifier.citedreferenceHampson EC, Vaney DI, Weiler R. 1992. Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci 12: 4911 â 4922.
dc.identifier.citedreferenceHampson EC, Weiler R, Vaney DI. 1994. pHâ gated dopaminergic modulation of horizontal cell gap junctions in mammalian retina. Proc Biol Sci 255: 67 â 72.
dc.identifier.citedreferenceHaverkamp S, Wässle H, Duebel J, Kuner T, Augustine GJ, Feng G, Euler T. 2005. The primordial, blueâ cone color system of the mouse retina. J Neurosci 25: 5438 â 5445.
dc.identifier.citedreferenceHaverkamp S, Michalakis S, Claes E, Seeliger MW, Humphries P, Biel M, Feigenspan A. 2006. Synaptic plasticity in CNGA3(â /â ) mice: cone bipolar cells react on the missing cone input and form ectopic synapses with rods. J Neurosci 26: 5248 â 5255.
dc.identifier.citedreferenceHaverkamp S, Specht D, Majumdar S, Zaidi NF, Brandstatter JH, Wasco W, Wässle H, Tom Dieck S. 2008. Type 4 OFF cone bipolar cells of the mouse retina express calsenilin and contact cones as well as rods. J Comp Neurol 507: 1087 â 1101.
dc.identifier.citedreferenceHelmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500: 168 â 174.
dc.identifier.citedreferenceHuang L, Shanker YG, Dubauskaite J, Zheng JZ, Yan W, Rosenzweig S, Spielman AI, Max M, Margolskee RF. 1999. Ggamma13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat Neurosci 2: 1055 â 1062.
dc.identifier.citedreferenceHuang L, Max M, Margolskee RF, Su H, Masland RH, Euler T. 2003. G protein subunit G gamma 13 is coexpressed with G alpha o, G beta 3, and G beta 4 in retinal ON bipolar cells. J Comp Neurol 455: 1 â 10.
dc.identifier.citedreferenceIchinose T, Hellmer CB. 2015. Differential signaling and glutamate receptor compositions in the OFF bipolar cell types in the mouse retina. J Physiol [Epub ahead of print].
dc.identifier.citedreferenceIchinose T, Lukasiewicz PD. 2007. Ambient light regulates sodium channel activity to dynamically control retinal signaling. J Neurosci 27: 4756 â 4764.
dc.identifier.citedreferenceIchinose T, Shields CR, Lukasiewicz PD. 2005. Sodium channels in transient retinal bipolar cells enhance visual responses in ganglion cells. J Neurosci 25: 1856 â 1865.
dc.identifier.citedreferenceIchinose T, Fykâ Kolodziej B, Cohn J. 2014. Roles of ON cone bipolar cell subtypes in temporal coding in the mouse retina. J Neurosci 34: 8761 â 8771.
dc.identifier.citedreferenceJackson GR, Owsley C. 2003. Visual dysfunction, neurodegenerative diseases, and aging. Neurol Clin 21: 709 â 728.
dc.identifier.citedreferenceJarvie KR, Booth G, Brown EM, Niznik HB. 1989. Glycoprotein nature of dopamine D1 receptors in the brain and parathyroid gland. Mol Pharmacol 36: 566 â 574.
dc.identifier.citedreferenceJin NG, Chuang AZ, Masson PJ, Ribelayga CP. 2015. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina. J Physiol 593: 1597 â 1631.
dc.identifier.citedreferenceKindler S, Wang H, Richter D, Tiedge H. 2005. RNA transport and local control of translation. Annu Rev Cell Dev Biol 21: 223 â 245.
dc.identifier.citedreferenceKothmann WW, Massey SC, O’Brien J. 2009. Dopamineâ stimulated dephosphorylation of connexin 36 mediates AII amacrine cell uncoupling. J Neurosci 29: 14903 â 14911.
dc.identifier.citedreferenceKothmann WW, Trexler EB, Whitaker CM, Li W, Massey SC, O’Brien J. 2012. Nonsynaptic NMDA receptors mediate activityâ dependent plasticity of gap junctional coupling in the AII amacrine cell network. J Neurosci 32: 6747 â 6759.
dc.identifier.citedreferenceLuedtke RR, Griffin SA, Conroy SS, Jin X, Pinto A, Sesack SR. 1999. Immunoblot and immunohistochemical comparison of murine monoclonal antibodies specific for the rat D1a and D1b dopamine receptor subtypes. J Neuroimmunol 101: 170 â 187.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.