Show simple item record

Osteogenesis and mineralization of mesenchymal stem cells in collagen type I‐based recombinant peptide scaffolds

dc.contributor.authorPawelec, Kendell M.
dc.contributor.authorConfalonieri, Davide
dc.contributor.authorEhlicke, Franziska
dc.contributor.authorvan Boxtel, Huibert A.
dc.contributor.authorWalles, Heike
dc.contributor.authorKluijtmans, Sebastiaan G. J. M.
dc.date.accessioned2017-06-16T20:15:20Z
dc.date.available2018-08-28T15:28:59Zen
dc.date.issued2017-07
dc.identifier.citationPawelec, Kendell M.; Confalonieri, Davide; Ehlicke, Franziska; van Boxtel, Huibert A.; Walles, Heike; Kluijtmans, Sebastiaan G. J. M. (2017). "Osteogenesis and mineralization of mesenchymal stem cells in collagen type I‐based recombinant peptide scaffolds." Journal of Biomedical Materials Research Part A 105(7): 1856-1866.
dc.identifier.issn1549-3296
dc.identifier.issn1552-4965
dc.identifier.urihttps://hdl.handle.net/2027.42/137535
dc.description.abstractRecombinant peptides have the power to harness the inherent biocompatibility of natural macromolecules, while maintaining a defined chemistry for use in tissue engineering. Creating scaffolds from peptides requires stabilization via crosslinking, a process known to alter both mechanics and density of adhesion ligands. The chemistry and mechanics of linear scaffolds from a recombinant peptide based on human collagen type I (RCP) was investigated after crosslinking. Three treatments were compared: dehydrothermal treatment (DHT), hexamethylene diisocyanate (HMDIC), and genipin. With crosslinking, mechanical properties were not significantly altered, ranging from 1.9 to 2.7 kPa. However, the chemistry of the scaffolds was changed, affecting properties such as water uptake, and initial adhesion of human mesenchymal stem cells (hMSCs). Genipin crosslinking supported the lowest adhesion, especially during osteoblastic differentiation. While significantly altered, RCP scaffold chemistry did not affect osteoblastic differentiation of hMSCs. After four weeks in vitro, all scaffolds showed excellent cellular infiltration, with up‐regulated osteogenic markers (RUNX2, Osteocalcin, Collagen type I) and mineralization, regardless of the crosslinker. Thus, it appears that, without significant changes to mechanical properties, crosslinking chemistry did not regulate hMSC differentiation on scaffolds from recombinant peptides, a growing class of materials with the ability to expand the horizons of regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1856–1866, 2017.
dc.publisherCRC Press LLC
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdifferentiation
dc.subject.othercrosslinking
dc.subject.otherstem cells
dc.subject.otherrecombinant collagen
dc.subject.otherosteogenesis
dc.titleOsteogenesis and mineralization of mesenchymal stem cells in collagen type I‐based recombinant peptide scaffolds
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137535/1/jbma36049.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137535/2/jbma36049_am.pdf
dc.identifier.doi10.1002/jbm.a.36049
dc.identifier.sourceJournal of Biomedical Materials Research Part A
dc.identifier.citedreferenceDavidenko N, Campbell JJ, Thian ES, Watson CJ, Cameron RE. Collagen‐hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater 2010; 6: 3957 – 3968.
dc.identifier.citedreferencePawelec KM, van Boxtel HA, Kluijtmans SGJM. Ice‐templating of anisotropic structures with high permeability. Mater Sci Eng C. Forthcoming.
dc.identifier.citedreferenceYannas IV, Tobolsky AV. Cross‐linking of gelatine by dehydration. Nature 1967; 215: 509.
dc.identifier.citedreferenceHaugh MG, Murphy CM, McKiernan RC, Altenbuchner C, O’Brien FJ. Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng A 2011; 17: 1201 – 1208.
dc.identifier.citedreferenceWeadock KS, Miller EJ, Bellincampi LD, Zawadsky JP, Dunn MG. Physical crosslinking of collagen fibers: Comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res 1995; 29: 1373 – 1379.
dc.identifier.citedreferenceDe Boer AL, van Urk H, Bouwstra JB, van Asten PFTM. RGD containing recombinant gelatin ( 2012 ) US Patent 8,198,047 B2.
dc.identifier.citedreferenceRosset EM, Bradshaw AD. Sparc/osteonectin in mineralized tissue. Matrix Biol 2016; 52–54: 78 – 87.
dc.identifier.citedreferenceBenitez PL, Mascharak S, Proctor AC, Heilshorn SC. Use of protein‐engineered fabrics to identify design rules for integrin ligand cluster in biomaterials. Intregr Biol 2016; 8: 50 – 61.
dc.identifier.citedreferenceYe K, Wang X, Cao L, Li S, Li Z, Yu L, Ding J. Matrix stiffness and nanoscale spatial organization of cell‐adhesive ligands direct stem cell fate. Nano Lett 2015; 15: 4720 – 4729.
dc.identifier.citedreferenceMurphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen‐glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010; 31: 461 – 466.
dc.identifier.citedreferenceCorreia C, Bhumiratana S, Yan L‐P, Oliveira AL, Gimble JM, Rockwood D, Kaplan DL, Sousa RA, Reis RL, Vunjak‐Novakovic G. Development of silk‐based scaffolds for tissue engineering of bone from human adipose‐derived stem cells. Acta Biomater 2012; 8: 2483 – 2492.
dc.identifier.citedreferenceAmadori S, Torricelli P, Rubini K, Fini M, Panzavolta S, Bigi A. Effect of sterilization and cross‐linking on gelatin films. J Mater Sci Mater Med 2015; 26: 69.
dc.identifier.citedreferencePoursamar SA, Lehner AN, Azami M, Ebrahimi‐Barough S, Samadikuchaksaraei A, Antunes APM. The effects of cross‐linkers on physical, mechanical and cytotoxic properties of gelatin sponge prepared via in‐situ gas foaming method as a tissue engineering scaffold. Mater Sci Eng C 2016; 63: 1 – 9.
dc.identifier.citedreferenceTzeranis DS, Soller EC, Buydash MC, So PTC, Yannas IV. In situ quantification of surface chemistry in porous collagen biomaterials. Ann Biomed Eng 2016; 44: 803 – 815.
dc.identifier.citedreferenceHarley BA, Leung JH, Silva E, Gibson LJ. Mechanical characterization of collagen‐glycosaminoglycan scaffolds. Acta Biomater 2007; 3: 463 – 474.
dc.identifier.citedreferenceMurphy CM, Duffy GP, Schindeler A, O’Brien FJ. Effect of collagen‐glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. J Biomed Mater Res A 2016; 104A: 291 – 304.
dc.identifier.citedreferenceHojo H, Ohba S, Yano F, Chung U‐I. Coordination of chondrogenesis and osteogenesis by hypertrophic chondrocytes in endochondral bone development. J Bone Miner Metab 2010; 28: 489 – 502.
dc.identifier.citedreferenceWang Q, Huang C, Xue M, Zhang X. Expression of endogenous bmp‐2 in periosteal progenitor cells is essential for bone healing. Bone 2011; 48: 524 – 532.
dc.identifier.citedreferenceTan S, Fang JY, Yang Z, Nimni ME, Han B. The synergetic effect of hydrogel stiffness and growth factor on osteogenic differentiation. Biomaterials 2014; 35: 5294 – 5306.
dc.identifier.citedreferenceOsyczka AM, Diefenderfer DL, Bhargave G, Leboy PS. Different effects of BMP‐2 on marrow stromal cells from human and rat bone. Cells Tissues Organs 2004; 176: 109 – 119.
dc.identifier.citedreferenceDiefenderfer DL, Osyczka AM, Reilly GC, Leboy PS. BMP responsiveness in human mesenchymal stem cells. Connect Tissue Res 2003; 44: 305 – 311.
dc.identifier.citedreferenceBoskey AL. The organic and inorganic matrices. In: Hollinger JO, Einhorn TA, Doll BA, Sfeir C, editors. Bone Tissue Engineering. New York: CRC Press LLC; 2005. p 91 – 124.
dc.identifier.citedreferenceKoegh MB, O’Brien FJ, Daly JS. Substrate stiffness and contractile behavior modulate the functional maturation of osteoblasts on a collagen‐GAG scaffold. Acta Biomater 2010; 6: 4305 – 4313.
dc.identifier.citedreferenceMann BK, West JL. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J Biomed Mater Res 2002; 60: 86 – 93.
dc.identifier.citedreferenceZhang D, Sun MB, Lee J, Abdeen AA, Kilian KA. Cell shape and the presentation of adhesion ligands guide smooth muscle myogenesis. J Biomed Mater Res A 2016; 104A: 1212 – 1220.
dc.identifier.citedreferencevan Luyn MJA, van Wachem PB, Olde Damink LHH, Dijkstra PJ, Feijen J, Nieuwenhuis P. Relations between in vitro cytotoxicity and crosslinked dermal sheep collagens. J Biomed Mater Res 1992; 26: 1091 – 1110.
dc.identifier.citedreferenceFriess W. Collagen—Biomaterial for drug delivery. Eur J Pharm Biopharm 1998; 45: 113 – 136.
dc.identifier.citedreferenceRamshaw JAM. Biomedical applications of collagens. J Biomed Mater Res B 2016; 104B: 665 – 675.
dc.identifier.citedreferenceHuebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera‐Feliciano J, Mooney DJ. Harnessing traction‐mediated manipulation of the cell‐matrix interface to control stem‐cell fate. Nat Mater 2010; 9: 518 – 526.
dc.identifier.citedreferenceEngler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126: 677 – 689.
dc.identifier.citedreferenceKim TH, An DB, Oh SH, Kang MK, Song HH, Lee JH. Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing‐thawing method to investigate stem cell differentiation behaviors. Biomaterials 2015; 40: 51 – 60.
dc.identifier.citedreferenceMurphy CM, Matsiko A, Haugh MG, Gleeson JP, O’Brien FJ. Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen‐glycosaminoglycan scaffolds. J Mech Behav Biomed Mater 2012; 11: 53 – 62.
dc.identifier.citedreferencePawelec KM, Best SM, Cameron RE. Collagen: A network for regenerative medicine. J Mater Chem B 2016; 4: 6484 – 6496.
dc.identifier.citedreferencevan Luyn MJA, van Wachem PB, Damink L, Dijkstra PJ, Feijen J, Nieuwenhuis P. Secondary cytotoxicity of cross‐linked dermal sheep collagens during repeated exposure to human fibroblasts. Biomaterials 1992; 13: 1017 – 1024.
dc.identifier.citedreferenceHaugh MG, Jaasma MJ, O’Brien FJ. The effect of dehydrothermal treatment on the mechanical and structural properties of collagen‐GAG scaffolds. J Biomed Mater 2008; 89A: 363 – 369.
dc.identifier.citedreferenceDavidenko N, Schuster CF, Bax DV, Raynal N, Farndale RW, Best SM, Cameron RE. Control of crosslinking for tailoring collagen‐based scaffolds stability and mechanics. Acta Biomater 2015; 25: 131 – 114.
dc.identifier.citedreferenceKhor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 1997; 18: 95 – 105.
dc.identifier.citedreferenceMuzzarelli RAA, Mehtedi ME, Bottegoni C, Aquili A, Gigante A. Genipin‐crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar Drugs 2015; 13: 7314 – 7338.
dc.identifier.citedreferenceBusnel JP, Morris ER, Ross‐Murphy SB. Interpretation of the renaturation kinetics of gelatin solutions. Int J Biol Macromol 1989; 11: 119 – 125.
dc.identifier.citedreferencevan Boxtel H. Porous tissue scaffolds ( 2016 ) US Patent 9,440,006 B2.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.