Show simple item record

Mechanismâ Guided Design and Synthesis of a Mitochondriaâ Targeting Artemisinin Analogue with Enhanced Anticancer Activity

dc.contributor.authorZhang, Chong‐jing
dc.contributor.authorWang, Jigang
dc.contributor.authorZhang, Jianbin
dc.contributor.authorLee, Yew Mun
dc.contributor.authorFeng, Guangxue
dc.contributor.authorLim, Teck Kwang
dc.contributor.authorShen, Han‐ming
dc.contributor.authorLin, Qingsong
dc.contributor.authorLiu, Bin
dc.date.accessioned2017-06-16T20:15:30Z
dc.date.available2017-12-01T21:54:13Zen
dc.date.issued2016-10-24
dc.identifier.citationZhang, Chong‐jing ; Wang, Jigang; Zhang, Jianbin; Lee, Yew Mun; Feng, Guangxue; Lim, Teck Kwang; Shen, Han‐ming ; Lin, Qingsong; Liu, Bin (2016). "Mechanismâ Guided Design and Synthesis of a Mitochondriaâ Targeting Artemisinin Analogue with Enhanced Anticancer Activity." Angewandte Chemie International Edition 55(44): 13770-13774.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/137542
dc.description.abstractUnderstanding the mechanism of action (MOA) of bioactive natural products will guide endeavor to improve their cellular activities. Artemisinin and its derivatives inhibit cancer cell proliferation, yet with much lower efficiencies than their roles in killing malaria parasites. To improve their efficacies on cancer cells, we studied the MOA of artemisinin using chemical proteomics and found that free heme could directly activate artemisinin. We then designed and synthesized a derivative, ARTâ TPP, which is capable of targeting the drug to mitochondria where free heme is synthesized. Remarkably, ARTâ TPP exerted more potent inhibition than its parent compound to cancer cells. A clickable probe ARTâ TPPâ Alk was also employed to confirm that the attachment of the TPP group could label more mitochondrial proteins than that for the ART derivative without TPP (AP1). This work shows the importance of MOA study, which enables us to optimize the design of natural drug analogues to improve their biological activities.A mechanism of action (MOA) study by chemical proteomics indicates that free heme plays a decisive role in the activation of artemisinin in cancer cells. Guided by this MOA, a mitochondria targeting analogue (ARTâ TPP; see picture) was developed that shows remarkable anticancer activities.
dc.publisherWiley Periodicals, Inc.
dc.subject.othertriphenylphosphonium
dc.subject.othermitochondria targeting
dc.subject.otherfluorescent probe
dc.subject.otherdrug delivery
dc.subject.otheranticancer activity
dc.titleMechanismâ Guided Design and Synthesis of a Mitochondriaâ Targeting Artemisinin Analogue with Enhanced Anticancer Activity
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137542/1/anie201607303-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137542/2/anie201607303_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137542/3/anie201607303.pdf
dc.identifier.doi10.1002/anie.201607303
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceR. A. J. Smith, R. C. Hartley, M. P. Murphy, Antioxid. Redox Signaling 2011, 15, 3021 â 3038.
dc.identifier.citedreferenceT. Böttcher, M. Pitscheider, S. A. Sieber, Angew. Chem. Int. Ed. 2010, 49, 2680 â 2698; Angew. Chem. 2010, 122, 2740 â 2759.
dc.identifier.citedreferenceJ. Wang, L. Gao, Y.â M. Lee, K.â A. Kalesh, Y.â S. Ong, J. Lim, J.-E. Jee, H. Sun, S.â S. Lee, Z.-C. Hua, etâ al., Pharmacol. Ther. 2016, DOI: 10.1016/j.pharmthera.2016.01.010.
dc.identifier.citedreferenceJ. Wang, X. F. Tan, V. S. Nguyen, P. Yang, J. Zhou, M. Gao, Z. Li, T. K. Lim, Y. He, C. S. Ong, etâ al., Mol. Cell. Proteomics 2014, 13, 876 â 886.
dc.identifier.citedreferenceS. Krishna, L. Bustamante, R. K. Haynes, H. M. Staines, Trends Pharmacol. Sci. 2008, 29, 520 â 527.
dc.identifier.citedreferenceX. C. Ding, H. P. Beck, G. Raso, Trends Parasitol. 2011, 27, 73 â 81.
dc.identifier.citedreferenceP. M. O’Neill, V. E. Barton, S. A. Ward, Molecules 2010, 15, 1705 â 1721.
dc.identifier.citedreferenceB. Meunier, A. Robert, Acc. Chem. Res. 2010, 43, 1444 â 1451.
dc.identifier.citedreferenceP. A. Stocks, P. G. Bray, V. E. Barton, M. Al-Helal, M. Jones, N. C. Araujo, P. Gibbons, S. A. Ward, R. H. Hughes, G. A. Biagini, etâ al., Angew. Chem. Int. Ed. 2007, 46, 6278 â 6283; Angew. Chem. 2007, 119, 6394 â 6399.
dc.identifier.citedreferenceU. Eckstein-Ludwig, R. J. Webb, I. D. A. vanâ Goethem, J. M. East, A. G. Lee, M. Kimura, P. M. O’Neill, P. G. Bray, S. A. Ward, S. Krishna, Nature 2003, 424, 957 â 961.
dc.identifier.citedreferenceS. R. Meshnick, Int. J. Parasitol. 2002, 32, 1655 â 1660.
dc.identifier.citedreferenceN. Klonis, D. J. Creek, L. Tilley, Curr. Opin. Microbiol. 2013, 16, 722 â 727.
dc.identifier.citedreferenceJ. Wang, C.-J. Zhang, W. N. Chia, C. C. Y. Loh, Z. Li, Y. M. Lee, Y. He, L.-X. Yuan, T. K. Lim, M. Liu, etâ al., Nat. Commun. 2015, 6, 10111.
dc.identifier.citedreferenceP. Ponka, Am. J. Med. Sci. 1999, 318, 241 â 256.
dc.identifier.citedreferenceL. F. Yousif, K. M. Stewart, S. O. Kelley, ChemBioChem 2009, 10, 1939 â 1950.
dc.identifier.citedreferenceY. Zhou, W. Li, Y. Xiao, ACS Chem. Biol. 2016, DOI: acschembio.5b01043.
dc.identifier.citedreferenceB. J. Reeder, R. C. Hider, M. T. Wilson, Free Radical Biol. Med. 2008, 44, 264 â 273.
dc.identifier.citedreferenceT. Antoine, N. Fisher, R. Amewu, P. M. O’Neill, S. A. Ward, G. A. Biagini, J. Antimicrob. Chemother. 2014, 69, 1005 â 1016.
dc.identifier.citedreferenceS. G. Sullivan, E. Baysal, a. Stern, Biochim. Biophys. Acta Biomembr. 1992, 1104, 38 â 44.
dc.identifier.citedreferenceI. Morel, J. Cillard, G. Lescoat, O. Sergent, N. Pasdeloup, A. Z. Ocaktan, M. A. Abdallah, P. Brissot, P. Cillard, Free Radical Biol. Med. 1992, 13, 499 â 508.
dc.identifier.citedreferenceA. S. Tsiftsoglou, A. I. Tsamadou, L. C. Papadopoulou, Pharmacol. Ther. 2006, 111, 327 â 345.
dc.identifier.citedreferenceA. A. Khan, J. G. Quigley, Biochim. Biophys. Acta Mol. Cell Res. 2011, 1813, 668 â 682.
dc.identifier.citedreferenceF. Wang, M. A. Ogasawara, P. Huang, Mol. Aspects Med. 2010, 31, 75 â 92.
dc.identifier.citedreferenceS. Davis, M. J. Weiss, J. R. Wong, T. J. Lampidis, L. B. Chen, J. Biol. Chem. 1985, 260, 13844 â 13850.
dc.identifier.citedreferenceQ. Hu, M. Gao, G. Feng, B. Liu, Angew. Chem. Int. Ed. 2014, 53, 14225 â 14229; Angew. Chem. 2014, 126, 14449 â 14453.
dc.identifier.citedreferenceJ. Hooda, D. Cadinu, M.â M. Alam, A. Shah, T.â M. Cao, L.â A. Sullivan, R. Brekken, L. Zhang, PLoS One 2013, 8, DOI: 10.1371/journal.pone.0063402.
dc.identifier.citedreferenceW. Ye, L. Zhang, Biochem. Biophys. Res. Commun. 2004, 315, 546 â 554.
dc.identifier.citedreferenceJ. L. Granick, S. Sassa, J. Biol. Chem. 1978, 253, 5402 â 5406.
dc.identifier.citedreferenceM. Rodriguez, C. Claparols, A. Robert, B. Meunier, ChemBioChem 2002, 3, 1147 â 1149.
dc.identifier.citedreferenceY. Ying-Zi, W. Asawamahasakda, S. R. Meshnick, Biochem. Pharmacol. 1993, 46, 336 â 339.
dc.identifier.citedreferenceB. J. Reeder, M. T. Wilson, Chem. Res. Toxicol. 2005, 18, 1004 â 1011.
dc.identifier.citedreferenceY. Tu, Nat. Med. 2011, 17, 1217 â 1220.
dc.identifier.citedreferenceY. Tu, Angew. Chem. Int. Ed. 2016, 55, 10210; Angew. Chem. 2016, 128, 10366.
dc.identifier.citedreferenceN. J. White, Lancet 2014, 383, 1439 â 1440.
dc.identifier.citedreferenceB. Greenwood, N. Engl. J. Med. 2014, 371, 474 â 475.
dc.identifier.citedreferenceL. Y. Kong, R. X. Tan, Nat. Prod. Rep. 2015, 32, 1617 â 1621.
dc.identifier.citedreferenceA. Hamacher-Brady, H. A. Stein, S. Turschner, I. Toegel, R. Mora, N. Jennewein, T. Efferth, R. Eils, N. R. Brady, J. Biol. Chem. 2011, 286, 6587 â 6601.
dc.identifier.citedreferenceN.-D. Yang, S.-H. Tan, S. Ng, Y. Shi, J. Zhou, K. S. W. Tan, W.-S. F. Wong, H.-M. Shen, J. Biol. Chem. 2014, 289, 33425 â 33441.
dc.identifier.citedreferenceW. E. Ho, H. Y. Peh, T. K. Chan, W. S. F. Wong, Pharmacol. Ther. 2014, 142, 126 â 139.
dc.identifier.citedreferenceS. Ziegler, V. Pries, C. Hedberg, H. Waldmann, Angew. Chem. Int. Ed. 2013, 52, 2744 â 2792; Angew. Chem. 2013, 125, 2808 â 2859.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.